From 7a7ae77c8390288746c87f6d35815cfdf7264696 Mon Sep 17 00:00:00 2001
From: str4d <str4d@mail.i2p>
Date: Wed, 12 Nov 2014 10:20:28 +0000
Subject: [PATCH] Updated EdDSA code

Source:
https://github.com/str4d/ed25519-java
Git commit:
58e4efadf972f4dc4f67c05152f82b49fb22bac6
---
 core/java/src/net/i2p/crypto/eddsa/Utils.java |   1 +
 .../src/net/i2p/crypto/eddsa/math/Curve.java  |   4 +-
 .../net/i2p/crypto/eddsa/math/Encoding.java   |   2 +-
 .../src/net/i2p/crypto/eddsa/math/Field.java  |  28 +-
 .../i2p/crypto/eddsa/math/FieldElement.java   |   7 +-
 .../i2p/crypto/eddsa/math/GroupElement.java   | 720 +++++++++++++-----
 .../net/i2p/crypto/eddsa/math/ScalarOps.java  |   3 +-
 .../BigIntegerLittleEndianEncoding.java       |   2 +-
 .../math/ed25519/Ed25519FieldElement.java     | 369 ++++++---
 .../ed25519/Ed25519LittleEndianEncoding.java  |  95 ++-
 .../eddsa/math/ed25519/Ed25519ScalarOps.java  | 181 +++--
 11 files changed, 975 insertions(+), 437 deletions(-)

diff --git a/core/java/src/net/i2p/crypto/eddsa/Utils.java b/core/java/src/net/i2p/crypto/eddsa/Utils.java
index 92cafaf231..3ade2ced4b 100644
--- a/core/java/src/net/i2p/crypto/eddsa/Utils.java
+++ b/core/java/src/net/i2p/crypto/eddsa/Utils.java
@@ -31,6 +31,7 @@ public class Utils {
         for (int i = 0; i < 32; i++) {
             result |= b[i] ^ c[i];
         }
+
         return equal(result, 0);
     }
 
diff --git a/core/java/src/net/i2p/crypto/eddsa/math/Curve.java b/core/java/src/net/i2p/crypto/eddsa/math/Curve.java
index 4cbc74757a..2c6ade4ea1 100644
--- a/core/java/src/net/i2p/crypto/eddsa/math/Curve.java
+++ b/core/java/src/net/i2p/crypto/eddsa/math/Curve.java
@@ -27,8 +27,8 @@ public class Curve implements Serializable {
         this.d2 = this.d.add(this.d);
         this.I = I;
 
-        FieldElement zero = f.zero;
-        FieldElement one = f.one;
+        FieldElement zero = f.ZERO;
+        FieldElement one = f.ONE;
         zeroP2 = GroupElement.p2(this, zero, one, one);
         zeroP3 = GroupElement.p3(this, zero, one, one, zero);
         zeroPrecomp = GroupElement.precomp(this, one, one, zero);
diff --git a/core/java/src/net/i2p/crypto/eddsa/math/Encoding.java b/core/java/src/net/i2p/crypto/eddsa/math/Encoding.java
index ffc01f0303..6dcb0e832a 100644
--- a/core/java/src/net/i2p/crypto/eddsa/math/Encoding.java
+++ b/core/java/src/net/i2p/crypto/eddsa/math/Encoding.java
@@ -32,7 +32,7 @@ public abstract class Encoding {
     public abstract FieldElement decode(byte[] in);
 
     /**
-     * From the Ed25519 paper:
+     * From the Ed25519 paper:<br>
      * x is negative if the (b-1)-bit encoding of x is lexicographically larger
      * than the (b-1)-bit encoding of -x. If q is an odd prime and the encoding
      * is the little-endian representation of {0, 1,..., q-1} then the negative
diff --git a/core/java/src/net/i2p/crypto/eddsa/math/Field.java b/core/java/src/net/i2p/crypto/eddsa/math/Field.java
index ce89b78519..dd8fceddf0 100644
--- a/core/java/src/net/i2p/crypto/eddsa/math/Field.java
+++ b/core/java/src/net/i2p/crypto/eddsa/math/Field.java
@@ -12,12 +12,12 @@ import java.io.Serializable;
 public class Field implements Serializable {
     private static final long serialVersionUID = 8746587465875676L;
 
-    public final FieldElement zero;
-    public final FieldElement one;
-    public final FieldElement two;
-    public final FieldElement four;
-    public final FieldElement five;
-    public final FieldElement eight;
+    public final FieldElement ZERO;
+    public final FieldElement ONE;
+    public final FieldElement TWO;
+    public final FieldElement FOUR;
+    public final FieldElement FIVE;
+    public final FieldElement EIGHT;
 
     private final int b;
     private final FieldElement q;
@@ -39,16 +39,16 @@ public class Field implements Serializable {
         this.q = fromByteArray(q);
 
         // Set up constants
-        zero = fromByteArray(Constants.ZERO);
-        one = fromByteArray(Constants.ONE);
-        two = fromByteArray(Constants.TWO);
-        four = fromByteArray(Constants.FOUR);
-        five = fromByteArray(Constants.FIVE);
-        eight = fromByteArray(Constants.EIGHT);
+        ZERO = fromByteArray(Constants.ZERO);
+        ONE = fromByteArray(Constants.ONE);
+        TWO = fromByteArray(Constants.TWO);
+        FOUR = fromByteArray(Constants.FOUR);
+        FIVE = fromByteArray(Constants.FIVE);
+        EIGHT = fromByteArray(Constants.EIGHT);
 
         // Precompute values
-        qm2 = this.q.subtract(two);
-        qm5d8 = this.q.subtract(five).divide(eight);
+        qm2 = this.q.subtract(TWO);
+        qm5d8 = this.q.subtract(FIVE).divide(EIGHT);
     }
 
     public FieldElement fromByteArray(byte[] x) {
diff --git a/core/java/src/net/i2p/crypto/eddsa/math/FieldElement.java b/core/java/src/net/i2p/crypto/eddsa/math/FieldElement.java
index 4d9fc6a528..7b29590ef9 100644
--- a/core/java/src/net/i2p/crypto/eddsa/math/FieldElement.java
+++ b/core/java/src/net/i2p/crypto/eddsa/math/FieldElement.java
@@ -9,6 +9,9 @@ public abstract class FieldElement {
     protected final Field f;
 
     public FieldElement(Field f) {
+        if (null == f) {
+            throw new IllegalArgumentException("field cannot be null");
+        }
         this.f = f;
     }
 
@@ -29,13 +32,13 @@ public abstract class FieldElement {
     public abstract FieldElement add(FieldElement val);
 
     public FieldElement addOne() {
-        return add(f.one);
+        return add(f.ONE);
     }
 
     public abstract FieldElement subtract(FieldElement val);
 
     public FieldElement subtractOne() {
-        return subtract(f.one);
+        return subtract(f.ONE);
     }
 
     public abstract FieldElement negate();
diff --git a/core/java/src/net/i2p/crypto/eddsa/math/GroupElement.java b/core/java/src/net/i2p/crypto/eddsa/math/GroupElement.java
index 1e416abe05..268005ed77 100644
--- a/core/java/src/net/i2p/crypto/eddsa/math/GroupElement.java
+++ b/core/java/src/net/i2p/crypto/eddsa/math/GroupElement.java
@@ -1,11 +1,22 @@
 package net.i2p.crypto.eddsa.math;
 
-import java.io.Serializable;
-
 import net.i2p.crypto.eddsa.Utils;
 
+import java.io.Serializable;
+import java.util.Arrays;
+
 /**
  * A point (x,y) on an EdDSA curve.
+ * <p>
+ * Reviewed/commented by Bloody Rookie (nemproject@gmx.de)
+ * <p>
+ * Literature:<br>
+ * [1] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe and Bo-Yin Yang : High-speed high-security signatures<br>
+ * [2] Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, Ed Dawson: Twisted Edwards Curves Revisited<br>
+ * [3] Daniel J. Bernsteina, Tanja Lange: A complete set of addition laws for incomplete Edwards curves<br>
+ * [4] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange and Christiane Peters: Twisted Edwards Curves<br>
+ * [5] Christiane Pascale Peters: Curves, Codes, and Cryptography (PhD thesis)<br>
+ * [6] Daniel J. Bernstein, Peter Birkner, Tanja Lange and Christiane Peters: Optimizing double-base elliptic-curve single-scalar multiplication<br>
  *
  * @since 0.9.15
  * @author str4d
@@ -14,12 +25,21 @@ import net.i2p.crypto.eddsa.Utils;
 public class GroupElement implements Serializable {
     private static final long serialVersionUID = 2395879087349587L;
 
+    /**
+     * Available representations for a group element.
+     * <p><ul>
+     * <li>P2: Projective representation (X:Y:Z) satisfying x=X/Z, y=Y/Z.
+     * <li>P3: Extended projective representation (X:Y:Z:T) satisfying x=X/Z, y=Y/Z, XY=ZT.
+     * <li>P1P1: Completed representation ((X:Z), (Y:T)) satisfying x=X/Z, y=Y/T.
+     * <li>PRECOMP: Precomputed representation (y+x, y-x, 2dxy).
+     * <li>CACHED: Cached representation (Y+X, Y-X, Z, 2dT)
+     */
     public enum Representation {
-        /** Projective: (X:Y:Z) satisfying x=X/Z, y=Y/Z */
+        /** Projective (P^2): (X:Y:Z) satisfying x=X/Z, y=Y/Z */
         P2,
-        /** Extended: (X:Y:Z:T) satisfying x=X/Z, y=Y/Z, XY=ZT */
+        /** Extended (P^3): (X:Y:Z:T) satisfying x=X/Z, y=Y/Z, XY=ZT */
         P3,
-        /** Completed: ((X:Z),(Y:T)) satisfying x=X/Z, y=Y/T */
+        /** Completed (P x P): ((X:Z),(Y:T)) satisfying x=X/Z, y=Y/T */
         P1P1,
         /** Precomputed (Duif): (y+x,y-x,2dxy) */
         PRECOMP,
@@ -27,28 +47,94 @@ public class GroupElement implements Serializable {
         CACHED
     }
 
-    public static GroupElement p2(Curve curve, FieldElement X,
-            FieldElement Y, FieldElement Z) {
+    /**
+     * Creates a new group element in P2 representation.
+     *
+     * @param curve The curve.
+     * @param X The X coordinate.
+     * @param Y The Y coordinate.
+     * @param Z The Z coordinate.
+     * @return The group element in P2 representation.
+     */
+    public static GroupElement p2(
+            final Curve curve,
+            final FieldElement X,
+            final FieldElement Y,
+            final FieldElement Z) {
         return new GroupElement(curve, Representation.P2, X, Y, Z, null);
     }
 
-    public static GroupElement p3(Curve curve, FieldElement X,
-            FieldElement Y, FieldElement Z, FieldElement T) {
+    /**
+     * Creates a new group element in P3 representation.
+     *
+     * @param curve The curve.
+     * @param X The X coordinate.
+     * @param Y The Y coordinate.
+     * @param Z The Z coordinate.
+     * @param T The T coordinate.
+     * @return The group element in P3 representation.
+     */
+    public static GroupElement p3(
+            final Curve curve,
+            final FieldElement X,
+            final FieldElement Y,
+            final FieldElement Z,
+            final FieldElement T) {
         return new GroupElement(curve, Representation.P3, X, Y, Z, T);
     }
 
-    public static GroupElement p1p1(Curve curve, FieldElement X,
-            FieldElement Y, FieldElement Z, FieldElement T) {
+    /**
+     * Creates a new group element in P1P1 representation.
+     *
+     * @param curve The curve.
+     * @param X The X coordinate.
+     * @param Y The Y coordinate.
+     * @param Z The Z coordinate.
+     * @param T The T coordinate.
+     * @return The group element in P1P1 representation.
+     */
+    public static GroupElement p1p1(
+            final Curve curve,
+            final FieldElement X,
+            final FieldElement Y,
+            final FieldElement Z,
+            final FieldElement T) {
         return new GroupElement(curve, Representation.P1P1, X, Y, Z, T);
     }
 
-    public static GroupElement precomp(Curve curve, FieldElement ypx,
-            FieldElement ymx, FieldElement xy2d) {
+    /**
+     * Creates a new group element in PRECOMP representation.
+     *
+     * @param curve The curve.
+     * @param ypx The y + x value.
+     * @param ymx The y - x value.
+     * @param xy2d The 2 * d * x * y value.
+     * @return The group element in PRECOMP representation.
+     */
+    public static GroupElement precomp(
+            final Curve curve,
+            final FieldElement ypx,
+            final FieldElement ymx,
+            final FieldElement xy2d) {
         return new GroupElement(curve, Representation.PRECOMP, ypx, ymx, xy2d, null);
     }
 
-    public static GroupElement cached(Curve curve, FieldElement YpX,
-            FieldElement YmX, FieldElement Z, FieldElement T2d) {
+    /**
+     * Creates a new group element in CACHED representation.
+     *
+     * @param curve The curve.
+     * @param YpX The Y + X value.
+     * @param YmX The Y - X value.
+     * @param Z The Z coordinate.
+     * @param T2d The 2 * d * T value.
+     * @return The group element in CACHED representation.
+     */
+    public static GroupElement cached(
+            final Curve curve,
+            final FieldElement YpX,
+            final FieldElement YmX,
+            final FieldElement Z,
+            final FieldElement T2d) {
         return new GroupElement(curve, Representation.CACHED, YpX, YmX, Z, T2d);
     }
 
@@ -56,43 +142,65 @@ public class GroupElement implements Serializable {
      * Variable is package private only so that tests run.
      */
     final Curve curve;
+
     /**
      * Variable is package private only so that tests run.
      */
     final Representation repr;
+
     /**
      * Variable is package private only so that tests run.
      */
     final FieldElement X;
+
     /**
      * Variable is package private only so that tests run.
      */
     final FieldElement Y;
+
     /**
      * Variable is package private only so that tests run.
      */
     final FieldElement Z;
+
     /**
      * Variable is package private only so that tests run.
      */
     final FieldElement T;
+
     /**
-     * Precomputed table for {@link GroupElement#scalarMultiply(byte[])},
+     * Precomputed table for {@link #scalarMultiply(byte[])},
      * filled if necessary.
-     *
+     * <p>
      * Variable is package private only so that tests run.
      */
     GroupElement[][] precmp;
+
     /**
-     * Precomputed table for {@link GroupElement#doubleScalarMultiplyVariableTime(GroupElement, byte[], byte[])},
+     * Precomputed table for {@link #doubleScalarMultiplyVariableTime(GroupElement, byte[], byte[])},
      * filled if necessary.
-     *
+     * <p>
      * Variable is package private only so that tests run.
      */
     GroupElement[] dblPrecmp;
 
-    public GroupElement(Curve curve, Representation repr, FieldElement X, FieldElement Y,
-            FieldElement Z, FieldElement T) {
+    /**
+     * Creates a group element for a curve.
+     *
+     * @param curve The curve.
+     * @param repr The representation used to represent the group element.
+     * @param X The X coordinate.
+     * @param Y The Y coordinate.
+     * @param Z The Z coordinate.
+     * @param T The T coordinate.
+     */
+    public GroupElement(
+            final Curve curve,
+            final Representation repr,
+            final FieldElement X,
+            final FieldElement Y,
+            final FieldElement Z,
+            final FieldElement T) {
         this.curve = curve;
         this.repr = repr;
         this.X = X;
@@ -101,12 +209,27 @@ public class GroupElement implements Serializable {
         this.T = T;
     }
 
-    public GroupElement(Curve curve, byte[] s) {
+    /**
+     * Creates a group element for a curve from a given encoded point.
+     * <p>
+     * A point (x,y) is encoded by storing y in bit 0 to bit 254 and the sign of x in bit 255.
+     * x is recovered in the following way:
+     * <p><ul>
+     * <li>x = sign(x) * sqrt((y^2 - 1) / (d * y^2 + 1)) = sign(x) * sqrt(u / v) with u = y^2 - 1 and v = d * y^2 + 1.
+     * <li>Setting β = (u * v^3) * (u * v^7)^((q - 5) / 8) one has β^2 = +-(u / v).
+     * <li>If v * β = -u multiply β with i=sqrt(-1).
+     * <li>Set x := β.
+     * <li>If sign(x) != bit 255 of s then negate x.
+     *
+     * @param curve The curve.
+     * @param s The encoded point.
+     */
+    public GroupElement(final Curve curve, final byte[] s) {
         FieldElement x, y, yy, u, v, v3, vxx, check;
         y = curve.getField().fromByteArray(s);
         yy = y.square();
 
-        // u = y^2-1	
+        // u = y^2-1    
         u = yy.subtractOne();
 
         // v = dy^2+1
@@ -116,7 +239,7 @@ public class GroupElement implements Serializable {
         v3 = v.square().multiply(v);
 
         // x = (v3^2)vu, aka x = uv^7
-        x = v3.square().multiply(v).multiply(u);	
+        x = v3.square().multiply(v).multiply(u);    
 
         //  x = (uv^7)^((q-5)/8)
         x = x.pow22523();
@@ -125,9 +248,9 @@ public class GroupElement implements Serializable {
         x = v3.multiply(u).multiply(x);
 
         vxx = x.square().multiply(v);
-        check = vxx.subtract(u);			// vx^2-u
+        check = vxx.subtract(u);            // vx^2-u
         if (check.isNonZero()) {
-            check = vxx.add(u);				// vx^2+u
+            check = vxx.add(u);             // vx^2+u
 
             if (check.isNonZero())
                 throw new IllegalArgumentException("not a valid GroupElement");
@@ -139,97 +262,209 @@ public class GroupElement implements Serializable {
         }
 
         this.curve = curve;
-        repr = Representation.P3;
-        X = x;
-        Y = y;
-        Z = curve.getField().one;
-        T = X.multiply(Y);
+        this.repr = Representation.P3;
+        this.X = x;
+        this.Y = y;
+        this.Z = curve.getField().ONE;
+        this.T = this.X.multiply(this.Y);
     }
 
+    /**
+     * Gets the curve of the group element.
+     *
+     * @return The curve.
+     */
+    public Curve getCurve() {
+        return this.curve;
+    }
+
+    /**
+     * Gets the representation of the group element.
+     *
+     * @return The representation.
+     */
+    public Representation getRepresentation() {
+        return this.repr;
+    }
+
+    /**
+     * Gets the X value of the group element.
+     * This is for most representation the projective X coordinate.
+     *
+     * @return The X value.
+     */
+    public FieldElement getX() {
+        return this.X;
+    }
+
+    /**
+     * Gets the Y value of the group element.
+     * This is for most representation the projective Y coordinate.
+     *
+     * @return The Y value.
+     */
+    public FieldElement getY() {
+        return this.Y;
+    }
+
+    /**
+     * Gets the Z value of the group element.
+     * This is for most representation the projective Z coordinate.
+     *
+     * @return The Z value.
+     */
+    public FieldElement getZ() {
+        return this.Z;
+    }
+
+    /**
+     * Gets the T value of the group element.
+     * This is for most representation the projective T coordinate.
+     *
+     * @return The T value.
+     */
+    public FieldElement getT() {
+        return this.T;
+    }
+
+    /**
+     * Converts the group element to an encoded point on the curve.
+     *
+     * @return The encoded point as byte array.
+     */
     public byte[] toByteArray() {
-        switch (repr) {
-        case P2:
-        case P3:
-            FieldElement recip = Z.invert();
-            FieldElement x = X.multiply(recip);
-            FieldElement y = Y.multiply(recip);
-            byte[] s = y.toByteArray();
-            s[s.length-1] |= (x.isNegative() ? (byte) 0x80 : 0);
-            return s;
-        default:
-            return toP2().toByteArray();
+        switch (this.repr) {
+            case P2:
+            case P3:
+                FieldElement recip = Z.invert();
+                FieldElement x = X.multiply(recip);
+                FieldElement y = Y.multiply(recip);
+                byte[] s = y.toByteArray();
+                s[s.length-1] |= (x.isNegative() ? (byte) 0x80 : 0);
+                return s;
+            default:
+                return toP2().toByteArray();
         }
     }
 
+    /**
+     * Converts the group element to the P2 representation.
+     *
+     * @return The group element in the P2 representation.
+     */
     public GroupElement toP2() {
         return toRep(Representation.P2);
     }
+
+    /**
+     * Converts the group element to the P3 representation.
+     *
+     * @return The group element in the P3 representation.
+     */
     public GroupElement toP3() {
         return toRep(Representation.P3);
     }
+
+    /**
+     * Converts the group element to the CACHED representation.
+     *
+     * @return The group element in the CACHED representation.
+     */
     public GroupElement toCached() {
         return toRep(Representation.CACHED);
     }
 
     /**
-     * Convert a GroupElement from one Representation to another.<br>
-     * r = p<br>
-     * <br>
-     * Supported conversions:<br>
-     * - P3 -> P2<br>
-     * - P3 -> CACHED (1 multiply, 1 add, 1 subtract)<br>
-     * - P1P1 -> P2 (3 multiply)<br>
-     * - P1P1 -> P3 (4 multiply)
-     * @param rep The Representation to convert to.
-     * @return A new GroupElement in the given Representation.
+     * Convert a GroupElement from one Representation to another.
+     * TODO-CR: Add additional conversion?
+     * r = p
+     * <p>
+     * Supported conversions:
+     * <p><ul>
+     * <li>P3 -> P2
+     * <li>P3 -> CACHED (1 multiply, 1 add, 1 subtract)
+     * <li>P1P1 -> P2 (3 multiply)
+     * <li>P1P1 -> P3 (4 multiply)
+     *
+     * @param repr The representation to convert to.
+     * @return A new group element in the given representation.
      */
-    private GroupElement toRep(Representation repr) {
+    private GroupElement toRep(final Representation repr) {
         switch (this.repr) {
-        case P3:
-            switch (repr) {
             case P2:
-                return p2(curve, X, Y, Z);
-            case CACHED:
-                return cached(curve, Y.add(X), Y.subtract(X), Z, T.multiply(curve.get2D()));
-            default:
-                throw new IllegalArgumentException();
-            }
-        case P1P1:
-            switch (repr) {
-            case P2:
-                return p2(curve, X.multiply(T), Y.multiply(Z), Z.multiply(T));
+                switch (repr) {
+                    case P2:
+                        return p2(this.curve, this.X, this.Y, this.Z);
+                    default:
+                        throw new IllegalArgumentException();
+                }
             case P3:
-                return p3(curve, X.multiply(T), Y.multiply(Z), Z.multiply(T), X.multiply(Y));
+                switch (repr) {
+                    case P2:
+                        return p2(this.curve, this.X, this.Y, this.Z);
+                    case P3:
+                        return p3(this.curve, this.X, this.Y, this.Z, this.T);
+                    case CACHED:
+                        return cached(this.curve, this.Y.add(this.X), this.Y.subtract(this.X), this.Z, this.T.multiply(this.curve.get2D()));
+                    default:
+                        throw new IllegalArgumentException();
+                }
+            case P1P1:
+                switch (repr) {
+                    case P2:
+                        return p2(this.curve, this.X.multiply(this.T), Y.multiply(this.Z), this.Z.multiply(this.T));
+                    case P3:
+                        return p3(this.curve, this.X.multiply(this.T), Y.multiply(this.Z), this.Z.multiply(this.T), this.X.multiply(this.Y));
+                    case P1P1:
+                        return p1p1(this.curve, this.X, this.Y, this.Z, this.T);
+                    default:
+                        throw new IllegalArgumentException();
+                }
+            case PRECOMP:
+                switch (repr) {
+                    case PRECOMP:
+                        return precomp(this.curve, this.X, this.Y, this.Z);
+                    default:
+                        throw new IllegalArgumentException();
+                }
+            case CACHED:
+                switch (repr) {
+                    case CACHED:
+                        return cached(this.curve, this.X, this.Y, this.Z, this.T);
+                    default:
+                        throw new IllegalArgumentException();
+                }
             default:
-                throw new IllegalArgumentException();
-            }
-        default:
-            throw new UnsupportedOperationException();
+                throw new UnsupportedOperationException();
         }
     }
 
     /**
-     * Precompute the tables for {@link GroupElement#scalarMultiply(byte[])}
-     * and {@link GroupElement#doubleScalarMultiplyVariableTime(GroupElement, byte[], byte[])}.
+     * Precomputes several tables.
+     * <p>
+     * The precomputed tables are used for {@link #scalarMultiply(byte[])}
+     * and {@link #doubleScalarMultiplyVariableTime(GroupElement, byte[], byte[])}.
      *
      * @param precomputeSingle should the matrix for scalarMultiply() be precomputed?
      */
-    public synchronized void precompute(boolean precomputeSingle) {
+    public synchronized void precompute(final boolean precomputeSingle) {
         GroupElement Bi;
 
-        if (precomputeSingle && precmp == null) {
+        if (precomputeSingle && this.precmp == null) {
             // Precomputation for single scalar multiplication.
-            precmp = new GroupElement[32][8];
+            this.precmp = new GroupElement[32][8];
+            // TODO-CR BR: check that this == base point when the method is called.
             Bi = this;
             for (int i = 0; i < 32; i++) {
                 GroupElement Bij = Bi;
                 for (int j = 0; j < 8; j++) {
-                    FieldElement recip = Bij.Z.invert();
-                    FieldElement x = Bij.X.multiply(recip);
-                    FieldElement y = Bij.Y.multiply(recip);
-                    precmp[i][j] = precomp(curve, y.add(x), y.subtract(x), x.multiply(y).multiply(curve.get2D()));
+                    final FieldElement recip = Bij.Z.invert();
+                    final FieldElement x = Bij.X.multiply(recip);
+                    final FieldElement y = Bij.Y.multiply(recip);
+                    this.precmp[i][j] = precomp(this.curve, y.add(x), y.subtract(x), x.multiply(y).multiply(this.curve.get2D()));
                     Bij = Bij.add(Bi.toCached()).toP3();
                 }
+                // Only every second summand is precomputed (16^2 = 256)
                 for (int k = 0; k < 8; k++) {
                     Bi = Bi.add(Bi.toCached()).toP3();
                 }
@@ -238,37 +473,64 @@ public class GroupElement implements Serializable {
 
         // Precomputation for double scalar multiplication.
         // P,3P,5P,7P,9P,11P,13P,15P
-        if (dblPrecmp != null)
+        if (this.dblPrecmp != null)
             return;
-        dblPrecmp = new GroupElement[8];
+        this.dblPrecmp = new GroupElement[8];
         Bi = this;
         for (int i = 0; i < 8; i++) {
-            FieldElement recip = Bi.Z.invert();
-            FieldElement x = Bi.X.multiply(recip);
-            FieldElement y = Bi.Y.multiply(recip);
-            dblPrecmp[i] = precomp(curve, y.add(x), y.subtract(x), x.multiply(y).multiply(curve.get2D()));
+            final FieldElement recip = Bi.Z.invert();
+            final FieldElement x = Bi.X.multiply(recip);
+            final FieldElement y = Bi.Y.multiply(recip);
+            this.dblPrecmp[i] = precomp(this.curve, y.add(x), y.subtract(x), x.multiply(y).multiply(this.curve.get2D()));
             // Bi = edwards(B,edwards(B,Bi))
-            Bi = add(add(Bi.toCached()).toP3().toCached()).toP3();
+            Bi = this.add(this.add(Bi.toCached()).toP3().toCached()).toP3();
         }
     }
 
     /**
-     * r = 2 * p
+     * Doubles a given group element p in P^2 or P^3 representation and returns the result in P x P representation.
+     * r = 2 * p where p = (X : Y : Z) or p = (X : Y : Z : T)
+     * <p>
+     * r in P x P representation:
+     * <p>
+     * r = ((X' : Z'), (Y' : T')) where
+     * <p><ul>
+     * <li>X' = (X + Y)^2 - (Y^2 + X^2)
+     * <li>Y' = Y^2 + X^2
+     * <li>Z' = y^2 - X^2
+     * <li>T' = 2 * Z^2 - (y^2 - X^2)
+     * </ul><p>
+     * r converted from P x P to P^2 representation:
+     * <p>
+     * r = (X'' : Y'' : Z'') where
+     * <p><ul>
+     * <li>X'' = X' * Z' = ((X + Y)^2 - Y^2 - X^2) * (2 * Z^2 - (y^2 - X^2))
+     * <li>Y'' = Y' * T' = (Y^2 + X^2) * (2 * Z^2 - (y^2 - X^2))
+     * <li>Z'' = Z' * T' = (y^2 - X^2) * (2 * Z^2 - (y^2 - X^2))
+     * </ul><p>
+     * Formula for the P^2 representation is in agreement with the formula given in [4] page 12 (with a = -1)
+     * up to a common factor -1 which does not matter:
+     * <p>
+     * B = (X + Y)^2; C = X^2; D = Y^2; E = -C = -X^2; F := E + D = Y^2 - X^2; H = Z^2; J = F − 2 * H;
+     * X3 = (B − C − D) · J = X' * (-T');
+     * Y3 = F · (E − D) = Z' * (-Y');
+     * Z3 = F · J = Z' * (-T').
+     *
      * @return The P1P1 representation
      */
     public GroupElement dbl() {
-        switch (repr) {
+        switch (this.repr) {
         case P2:
         case P3: // Ignore T for P3 representation
             FieldElement XX, YY, B, A, AA, Yn, Zn;
-            XX = X.square();
-            YY = Y.square();
-            B = Z.squareAndDouble();
-            A = X.add(Y);
+            XX = this.X.square();
+            YY = this.Y.square();
+            B = this.Z.squareAndDouble();
+            A = this.X.add(this.Y);
             AA = A.square();
             Yn = YY.add(XX);
             Zn = YY.subtract(XX);
-            return p1p1(curve, AA.subtract(Yn), Yn, Zn, B.subtract(Zn));
+            return p1p1(this.curve, AA.subtract(Yn), Yn, Zn, B.subtract(Zn));
         default:
             throw new UnsupportedOperationException();
         }
@@ -276,8 +538,44 @@ public class GroupElement implements Serializable {
 
     /**
      * GroupElement addition using the twisted Edwards addition law with
-     * extended coordinates (Hisil2008).<br>
-     * r = p + q
+     * extended coordinates (Hisil2008).
+     * <p>
+     * this must be in P^3 representation and q in PRECOMP representation.
+     * r = p + q where p = this = (X1 : Y1 : Z1 : T1), q = (q.X, q.Y, q.Z) = (Y2/Z2 + X2/Z2, Y2/Z2 - X2/Z2, 2 * d * X2/Z2 * Y2/Z2)
+     * <p>
+     * r in P x P representation:
+     * <p>
+     * r = ((X' : Z'), (Y' : T')) where
+     * <p><ul>
+     * <li>X' = (Y1 + X1) * q.X - (Y1 - X1) * q.Y = ((Y1 + X1) * (Y2 + X2) - (Y1 - X1) * (Y2 - X2)) * 1/Z2
+     * <li>Y' = (Y1 + X1) * q.X + (Y1 - X1) * q.Y = ((Y1 + X1) * (Y2 + X2) + (Y1 - X1) * (Y2 - X2)) * 1/Z2
+     * <li>Z' = 2 * Z1 + T1 * q.Z = 2 * Z1 + T1 * 2 * d * X2 * Y2 * 1/Z2^2 = (2 * Z1 * Z2 + 2 * d * T1 * T2) * 1/Z2
+     * <li>T' = 2 * Z1 - T1 * q.Z = 2 * Z1 - T1 * 2 * d * X2 * Y2 * 1/Z2^2 = (2 * Z1 * Z2 - 2 * d * T1 * T2) * 1/Z2
+     * </ul><p>
+     * Setting A = (Y1 - X1) * (Y2 - X2), B = (Y1 + X1) * (Y2 + X2), C = 2 * d * T1 * T2, D = 2 * Z1 * Z2 we get
+     * <p><ul>
+     * <li>X' = (B - A) * 1/Z2
+     * <li>Y' = (B + A) * 1/Z2
+     * <li>Z' = (D + C) * 1/Z2
+     * <li>T' = (D - C) * 1/Z2
+     * </ul><p>
+     * r converted from P x P to P^2 representation:
+     * <p>
+     * r = (X'' : Y'' : Z'' : T'') where
+     * <p><ul>
+     * <li>X'' = X' * Z' = (B - A) * (D + C) * 1/Z2^2
+     * <li>Y'' = Y' * T' = (B + A) * (D - C) * 1/Z2^2
+     * <li>Z'' = Z' * T' = (D + C) * (D - C) * 1/Z2^2
+     * <li>T'' = X' * Y' = (B - A) * (B + A) * 1/Z2^2
+     * </ul><p>
+     * TODO-CR BR: Formula for the P^2 representation is not in agreement with the formula given in [2] page 6<br>
+     * TODO-CR BR: (the common factor 1/Z2^2 does not matter):<br>
+     * E = B - A, F = D - C, G = D + C, H = B + A<br>
+     * X3 = E * F = (B - A) * (D - C);
+     * Y3 = G * H = (D + C) * (B + A);
+     * Z3 = F * G = (D - C) * (D + C);
+     * T3 = E * H = (B - A) * (B + A);
+     *
      * @param q the PRECOMP representation of the GroupElement to add.
      * @return the P1P1 representation of the result.
      */
@@ -288,19 +586,25 @@ public class GroupElement implements Serializable {
             throw new IllegalArgumentException();
 
         FieldElement YpX, YmX, A, B, C, D;
-        YpX = Y.add(X);
-        YmX = Y.subtract(X);
+        YpX = this.Y.add(this.X);
+        YmX = this.Y.subtract(this.X);
         A = YpX.multiply(q.X); // q->y+x
         B = YmX.multiply(q.Y); // q->y-x
-        C = q.Z.multiply(T); // q->2dxy
-        D = Z.add(Z);
-        return p1p1(curve, A.subtract(B), A.add(B), D.add(C), D.subtract(C));
+        C = q.Z.multiply(this.T); // q->2dxy
+        D = this.Z.add(this.Z);
+        return p1p1(this.curve, A.subtract(B), A.add(B), D.add(C), D.subtract(C));
     }
 
     /**
      * GroupElement subtraction using the twisted Edwards addition law with
-     * extended coordinates (Hisil2008).<br>
-     * r = p - q
+     * extended coordinates (Hisil2008).
+     * <p>
+     * this must be in P^3 representation and q in PRECOMP representation.
+     * r = p - q where p = this = (X1 : Y1 : Z1 : T1), q = (q.X, q.Y, q.Z) = (Y2/Z2 + X2/Z2, Y2/Z2 - X2/Z2, 2 * d * X2/Z2 * Y2/Z2)
+     * <p>
+     * Negating q means negating the value of X2 and T2 (the latter is irrelevant here).
+     * The formula is in accordance to {@link #madd the above addition}.
+     *
      * @param q the PRECOMP representation of the GroupElement to subtract.
      * @return the P1P1 representation of the result.
      */
@@ -311,19 +615,38 @@ public class GroupElement implements Serializable {
             throw new IllegalArgumentException();
 
         FieldElement YpX, YmX, A, B, C, D;
-        YpX = Y.add(X);
-        YmX = Y.subtract(X);
+        YpX = this.Y.add(this.X);
+        YmX = this.Y.subtract(this.X);
         A = YpX.multiply(q.Y); // q->y-x
         B = YmX.multiply(q.X); // q->y+x
-        C = q.Z.multiply(T); // q->2dxy
-        D = Z.add(Z);
-        return p1p1(curve, A.subtract(B), A.add(B), D.subtract(C), D.add(C));
+        C = q.Z.multiply(this.T); // q->2dxy
+        D = this.Z.add(this.Z);
+        return p1p1(this.curve, A.subtract(B), A.add(B), D.subtract(C), D.add(C));
     }
 
     /**
      * GroupElement addition using the twisted Edwards addition law with
-     * extended coordinates (Hisil2008).<br>
-     * r = p + q
+     * extended coordinates (Hisil2008).
+     * <p>
+     * this must be in P^3 representation and q in CACHED representation.
+     * r = p + q where p = this = (X1 : Y1 : Z1 : T1), q = (q.X, q.Y, q.Z, q.T) = (Y2 + X2, Y2 - X2, Z2, 2 * d * T2)
+     * <p>
+     * r in P x P representation:
+     * <p><ul>
+     * <li>X' = (Y1 + X1) * (Y2 + X2) - (Y1 - X1) * (Y2 - X2)
+     * <li>Y' = (Y1 + X1) * (Y2 + X2) + (Y1 - X1) * (Y2 - X2)
+     * <li>Z' = 2 * Z1 * Z2 + 2 * d * T1 * T2
+     * <li>T' = 2 * Z1 * T2 - 2 * d * T1 * T2
+     * </ul><p>
+     * Setting A = (Y1 - X1) * (Y2 - X2), B = (Y1 + X1) * (Y2 + X2), C = 2 * d * T1 * T2, D = 2 * Z1 * Z2 we get
+     * <p><ul>
+     * <li>X' = (B - A)
+     * <li>Y' = (B + A)
+     * <li>Z' = (D + C)
+     * <li>T' = (D - C)
+     * </ul><p>
+     * Same result as in {@link #madd} (up to a common factor which does not matter).
+     *
      * @param q the CACHED representation of the GroupElement to add.
      * @return the P1P1 representation of the result.
      */
@@ -334,20 +657,25 @@ public class GroupElement implements Serializable {
             throw new IllegalArgumentException();
 
         FieldElement YpX, YmX, A, B, C, ZZ, D;
-        YpX = Y.add(X);
-        YmX = Y.subtract(X);
+        YpX = this.Y.add(this.X);
+        YmX = this.Y.subtract(this.X);
         A = YpX.multiply(q.X); // q->Y+X
         B = YmX.multiply(q.Y); // q->Y-X
-        C = q.T.multiply(T); // q->2dT
-        ZZ = Z.multiply(q.Z);
+        C = q.T.multiply(this.T); // q->2dT
+        ZZ = this.Z.multiply(q.Z);
         D = ZZ.add(ZZ);
-        return p1p1(curve, A.subtract(B), A.add(B), D.add(C), D.subtract(C));
+        return p1p1(this.curve, A.subtract(B), A.add(B), D.add(C), D.subtract(C));
     }
 
     /**
      * GroupElement subtraction using the twisted Edwards addition law with
-     * extended coordinates (Hisil2008).<br>
+     * extended coordinates (Hisil2008).
+     * <p>
      * r = p - q
+     * <p>
+     * Negating q means negating the value of the coordinate X2 and T2.
+     * The formula is in accordance to {@link #add the above addition}.
+     *
      * @param q the PRECOMP representation of the GroupElement to subtract.
      * @return the P1P1 representation of the result.
      */
@@ -368,16 +696,22 @@ public class GroupElement implements Serializable {
         return p1p1(curve, A.subtract(B), A.add(B), D.subtract(C), D.add(C));
     }
 
+    /**
+     * Negates this group element by subtracting it from the neutral group element.
+     * <p>
+     * TODO-CR BR: why not simply negate the coordinates X and T?
+     *
+     * @return The negative of this group element.
+     */
     public GroupElement negate() {
         if (this.repr != Representation.P3)
             throw new UnsupportedOperationException();
-        return curve.getZero(Representation.P3).sub(toCached()).toP3();
+        return this.curve.getZero(Representation.P3).sub(toCached()).toP3();
     }
 
     @Override
     public int hashCode() {
-        // TODO
-        return 42;
+        return Arrays.hashCode(this.toByteArray());
     }
 
     @Override
@@ -393,49 +727,49 @@ public class GroupElement implements Serializable {
             }
         }
         switch (this.repr) {
-        case P2:
-        case P3:
-            // Try easy way first
-            if (Z.equals(ge.Z))
-                return X.equals(ge.X) && Y.equals(ge.Y);
-            // X1/Z1 = X2/Z2 --> X1*Z2 = X2*Z1
-            FieldElement x1 = X.multiply(ge.Z);
-            FieldElement y1 = Y.multiply(ge.Z);
-            FieldElement x2 = ge.X.multiply(Z);
-            FieldElement y2 = ge.Y.multiply(Z);
-            return x1.equals(x2) && y1.equals(y2);
-        case P1P1:
-            return toP2().equals(ge);
-        case PRECOMP:
-            // Compare directly, PRECOMP is derived directly from x and y
-            return X.equals(ge.X) && Y.equals(ge.Y) && Z.equals(ge.Z);
-        case CACHED:
-            // Try easy way first
-            if (Z.equals(ge.Z))
-                return X.equals(ge.X) && Y.equals(ge.Y) && T.equals(ge.T);
-            // (Y+X)/Z = y+x etc.
-            FieldElement x3 = X.multiply(ge.Z);
-            FieldElement y3 = Y.multiply(ge.Z);
-            FieldElement t3 = T.multiply(ge.Z);
-            FieldElement x4 = ge.X.multiply(Z);
-            FieldElement y4 = ge.Y.multiply(Z);
-            FieldElement t4 = ge.T.multiply(Z);
-            return x3.equals(x4) && y3.equals(y4) && t3.equals(t4);
-        default:
-            return false;
+            case P2:
+            case P3:
+                // Try easy way first
+                if (this.Z.equals(ge.Z))
+                    return this.X.equals(ge.X) && this.Y.equals(ge.Y);
+                // X1/Z1 = X2/Z2 --> X1*Z2 = X2*Z1
+                final FieldElement x1 = this.X.multiply(ge.Z);
+                final FieldElement y1 = this.Y.multiply(ge.Z);
+                final FieldElement x2 = ge.X.multiply(this.Z);
+                final FieldElement y2 = ge.Y.multiply(this.Z);
+                return x1.equals(x2) && y1.equals(y2);
+            case P1P1:
+                return toP2().equals(ge);
+            case PRECOMP:
+                // Compare directly, PRECOMP is derived directly from x and y
+                return this.X.equals(ge.X) && this.Y.equals(ge.Y) && this.Z.equals(ge.Z);
+            case CACHED:
+                // Try easy way first
+                if (this.Z.equals(ge.Z))
+                    return this.X.equals(ge.X) && this.Y.equals(ge.Y) && this.T.equals(ge.T);
+                // (Y+X)/Z = y+x etc.
+                final FieldElement x3 = this.X.multiply(ge.Z);
+                final FieldElement y3 = this.Y.multiply(ge.Z);
+                final FieldElement t3 = this.T.multiply(ge.Z);
+                final FieldElement x4 = ge.X.multiply(this.Z);
+                final FieldElement y4 = ge.Y.multiply(this.Z);
+                final FieldElement t4 = ge.T.multiply(this.Z);
+                return x3.equals(x4) && y3.equals(y4) && t3.equals(t4);
+            default:
+                return false;
         }
     }
 
     /**
      * Convert a to radix 16.
-     *
+     * <p>
      * Method is package private only so that tests run.
      *
      * @param a = a[0]+256*a[1]+...+256^31 a[31]
      * @return 64 bytes, each between -8 and 7
      */
-    static byte[] toRadix16(byte[] a) {
-        byte[] e = new byte[64];
+    static byte[] toRadix16(final byte[] a) {
+        final byte[] e = new byte[64];
         int i;
         // Radix 16 notation
         for (i = 0; i < 32; i++) {
@@ -458,16 +792,17 @@ public class GroupElement implements Serializable {
 
     /**
      * Constant-time conditional move.
-     * Replaces this with u if b == 1.
+     * <p>
+     * Replaces this with u if b == 1.<br>
      * Replaces this with this if b == 0.
-     *
+     * <p>
      * Method is package private only so that tests run.
      *
-     * @param u
+     * @param u The group element to return if b == 1.
      * @param b in {0, 1}
      * @return u if b == 1; this if b == 0; null otherwise.
      */
-    GroupElement cmov(GroupElement u, int b) {
+    GroupElement cmov(final GroupElement u, final int b) {
         GroupElement ret = null;
         for (int i = 0; i < b; i++) {
             // Only for b == 1
@@ -482,35 +817,36 @@ public class GroupElement implements Serializable {
 
     /**
      * Look up 16^i r_i B in the precomputed table.
+     * <p>
      * No secret array indices, no secret branching.
      * Constant time.
-     *
+     * <p>
      * Must have previously precomputed.
-     *
+     * <p>
      * Method is package private only so that tests run.
      *
      * @param pos = i/2 for i in {0, 2, 4,..., 62}
      * @param b = r_i
      * @return the GroupElement
      */
-    GroupElement select(int pos, int b) {
+    GroupElement select(final int pos, final int b) {
         // Is r_i negative?
-        int bnegative = Utils.negative(b);
+        final int bnegative = Utils.negative(b);
         // |r_i|
-        int babs = b - (((-bnegative) & b) << 1);
+        final int babs = b - (((-bnegative) & b) << 1);
 
         // 16^i |r_i| B
-        GroupElement t = curve.getZero(Representation.PRECOMP)
-                .cmov(precmp[pos][0], Utils.equal(babs, 1))
-                .cmov(precmp[pos][1], Utils.equal(babs, 2))
-                .cmov(precmp[pos][2], Utils.equal(babs, 3))
-                .cmov(precmp[pos][3], Utils.equal(babs, 4))
-                .cmov(precmp[pos][4], Utils.equal(babs, 5))
-                .cmov(precmp[pos][5], Utils.equal(babs, 6))
-                .cmov(precmp[pos][6], Utils.equal(babs, 7))
-                .cmov(precmp[pos][7], Utils.equal(babs, 8));
+        final GroupElement t = this.curve.getZero(Representation.PRECOMP)
+                .cmov(this.precmp[pos][0], Utils.equal(babs, 1))
+                .cmov(this.precmp[pos][1], Utils.equal(babs, 2))
+                .cmov(this.precmp[pos][2], Utils.equal(babs, 3))
+                .cmov(this.precmp[pos][3], Utils.equal(babs, 4))
+                .cmov(this.precmp[pos][4], Utils.equal(babs, 5))
+                .cmov(this.precmp[pos][5], Utils.equal(babs, 6))
+                .cmov(this.precmp[pos][6], Utils.equal(babs, 7))
+                .cmov(this.precmp[pos][7], Utils.equal(babs, 8));
         // -16^i |r_i| B
-        GroupElement tminus = precomp(curve, t.Y, t.X, t.Z.negate());
+        final GroupElement tminus = precomp(curve, t.Y, t.X, t.Z.negate());
         // 16^i r_i B
         return t.cmov(tminus, bnegative);
     }
@@ -520,19 +856,19 @@ public class GroupElement implements Serializable {
      * B is this point. If its lookup table has not been precomputed, it
      * will be at the start of the method (and cached for later calls). 
      * Constant time.
-     *
+     * <p>
      * Preconditions: (TODO: Check this applies here)
      *   a[31] <= 127
      * @param a = a[0]+256*a[1]+...+256^31 a[31]
      * @return the GroupElement
      */
-    public GroupElement scalarMultiply(byte[] a) {
+    public GroupElement scalarMultiply(final byte[] a) {
         GroupElement t;
         int i;
 
-        byte[] e = toRadix16(a);
+        final byte[] e = toRadix16(a);
 
-        GroupElement h = curve.getZero(Representation.P3);
+        GroupElement h = this.curve.getZero(Representation.P3);
         synchronized(this) {
             // TODO: Get opinion from a crypto professional.
             // This should in practice never be necessary, the only point that
@@ -555,24 +891,30 @@ public class GroupElement implements Serializable {
     }
 
     /**
-     * I don't really know what this method does.
-     *
+     * Calculates a sliding-windows base 2 representation for a given value a.
+     * To learn more about it see [6] page 8.
+     * <p>
+     * Output: r which satisfies
+     * a = r0 * 2^0 + r1 * 2^1 + ... + r255 * 2^255 with ri in {-15, -13, -11, -9, -7, -5, -3, -1, 0, 1, 3, 5, 7, 9, 11, 13, 15}
+     * <p>
      * Method is package private only so that tests run.
      *
-     * @param a 32 bytes
-     * @return 256 bytes
+     * @param a = a[0]+256*a[1]+...+256^31 a[31].
+     * @return The byte array r in the above described form.
      */
-    static byte[] slide(byte[] a) {
+    static byte[] slide(final byte[] a) {
         byte[] r = new byte[256];
 
-        // put each bit of 'a' into a separate byte, 0 or 1
+        // Put each bit of 'a' into a separate byte, 0 or 1
         for (int i = 0; i < 256; ++i) {
             r[i] = (byte) (1 & (a[i >> 3] >> (i & 7)));
         }
 
+        // Note: r[i] will always be odd.
         for (int i = 0; i < 256; ++i) {
             if (r[i] != 0) {
                 for (int b = 1; b <= 6 && i + b < 256; ++b) {
+                    // Accumulate bits if possible
                     if (r[i + b] != 0) {
                         if (r[i] + (r[i + b] << b) <= 15) {
                             r[i] += r[i + b] << b;
@@ -599,7 +941,7 @@ public class GroupElement implements Serializable {
     /**
      * r = a * A + b * B where a = a[0]+256*a[1]+...+256^31 a[31],
      * b = b[0]+256*b[1]+...+256^31 b[31] and B is this point.
-     *
+     * <p>
      * A must have been previously precomputed.
      *
      * @param A in P3 representation.
@@ -607,11 +949,12 @@ public class GroupElement implements Serializable {
      * @param b = b[0]+256*b[1]+...+256^31 b[31]
      * @return the GroupElement
      */
-    public GroupElement doubleScalarMultiplyVariableTime(GroupElement A, byte[] a, byte[] b) {
-        byte[] aslide = slide(a);
-        byte[] bslide = slide(b);
+    public GroupElement doubleScalarMultiplyVariableTime(final GroupElement A, final byte[] a, final byte[] b) {
+        // TODO-CR BR: A check that this is the base point is needed.
+        final byte[] aslide = slide(a);
+        final byte[] bslide = slide(b);
 
-        GroupElement r = curve.getZero(Representation.P2);
+        GroupElement r = this.curve.getZero(Representation.P2);
 
         int i;
         for (i = 255; i >= 0; --i) {
@@ -619,6 +962,7 @@ public class GroupElement implements Serializable {
         }
 
         synchronized(this) {
+            // TODO-CR BR strange comment below.
             // TODO: Get opinion from a crypto professional.
             // This should in practice never be necessary, the only point that
             // this should get called on is EdDSA's B.
@@ -633,9 +977,9 @@ public class GroupElement implements Serializable {
                 }
 
                 if (bslide[i] > 0) {
-                    t = t.toP3().madd(dblPrecmp[bslide[i]/2]);
+                    t = t.toP3().madd(this.dblPrecmp[bslide[i]/2]);
                 } else if(bslide[i] < 0) {
-                    t = t.toP3().msub(dblPrecmp[(-bslide[i])/2]);
+                    t = t.toP3().msub(this.dblPrecmp[(-bslide[i])/2]);
                 }
 
                 r = t.toP2();
@@ -668,7 +1012,7 @@ public class GroupElement implements Serializable {
             FieldElement xx = x.square();
             FieldElement yy = y.square();
             FieldElement dxxyy = curve.getD().multiply(xx).multiply(yy);
-            return curve.getField().one.add(dxxyy).add(xx).equals(yy);
+            return curve.getField().ONE.add(dxxyy).add(xx).equals(yy);
 
         default:
             return toP2().isOnCurve(curve);
diff --git a/core/java/src/net/i2p/crypto/eddsa/math/ScalarOps.java b/core/java/src/net/i2p/crypto/eddsa/math/ScalarOps.java
index d90a80bcbe..8cad008fe5 100644
--- a/core/java/src/net/i2p/crypto/eddsa/math/ScalarOps.java
+++ b/core/java/src/net/i2p/crypto/eddsa/math/ScalarOps.java
@@ -8,7 +8,8 @@ package net.i2p.crypto.eddsa.math;
 public interface ScalarOps {
     /**
      * Reduce the given scalar mod l.
-     * From the Ed25519 paper:
+     * <p>
+     * From the Ed25519 paper:<br>
      * Here we interpret 2b-bit strings in little-endian form as integers in
      * {0, 1,..., 2^(2b)-1}.
      * @param s
diff --git a/core/java/src/net/i2p/crypto/eddsa/math/bigint/BigIntegerLittleEndianEncoding.java b/core/java/src/net/i2p/crypto/eddsa/math/bigint/BigIntegerLittleEndianEncoding.java
index cd295cfc01..06d3fd6a7c 100644
--- a/core/java/src/net/i2p/crypto/eddsa/math/bigint/BigIntegerLittleEndianEncoding.java
+++ b/core/java/src/net/i2p/crypto/eddsa/math/bigint/BigIntegerLittleEndianEncoding.java
@@ -60,7 +60,7 @@ public class BigIntegerLittleEndianEncoding extends Encoding implements Serializ
     }
 
     /**
-     * From the Ed25519 paper:
+     * From the Ed25519 paper:<br>
      * x is negative if the (b-1)-bit encoding of x is lexicographically larger
      * than the (b-1)-bit encoding of -x. If q is an odd prime and the encoding
      * is the little-endian representation of {0, 1,..., q-1} then the negative
diff --git a/core/java/src/net/i2p/crypto/eddsa/math/ed25519/Ed25519FieldElement.java b/core/java/src/net/i2p/crypto/eddsa/math/ed25519/Ed25519FieldElement.java
index dc527e3692..8dd9831550 100644
--- a/core/java/src/net/i2p/crypto/eddsa/math/ed25519/Ed25519FieldElement.java
+++ b/core/java/src/net/i2p/crypto/eddsa/math/ed25519/Ed25519FieldElement.java
@@ -1,13 +1,18 @@
 package net.i2p.crypto.eddsa.math.ed25519;
 
 import net.i2p.crypto.eddsa.Utils;
-import net.i2p.crypto.eddsa.math.Field;
-import net.i2p.crypto.eddsa.math.FieldElement;
+import net.i2p.crypto.eddsa.math.*;
+
+import java.util.Arrays;
 
 /**
+ * Class to represent a field element of the finite field p=2^255-19 elements.
+ * <p>
  * An element t, entries t[0]...t[9], represents the integer
  * t[0]+2^26 t[1]+2^51 t[2]+2^77 t[3]+2^102 t[4]+...+2^230 t[9].
  * Bounds on each t[i] vary depending on context.
+ * <p>
+ * Reviewed/commented by Bloody Rookie (nemproject@gmx.de)
  */
 public class Ed25519FieldElement extends FieldElement {
     /**
@@ -15,6 +20,12 @@ public class Ed25519FieldElement extends FieldElement {
      */
     final int[] t;
 
+    /**
+     * Creates a field element.
+     *
+     * @param f The underlying field, must be the finite field with p = 2^255 - 19 elements
+     * @param t The 2^25.5 bit representation of the field element.
+     */
     public Ed25519FieldElement(Field f, int[] t) {
         super(f);
         if (t.length != 10)
@@ -24,21 +35,32 @@ public class Ed25519FieldElement extends FieldElement {
 
     private static final byte[] ZERO = new byte[32];
 
+    /**
+     * Gets a value indicating whether or not the field element is non-zero.
+     *
+     * @return 1 if it is non-zero, 0 otherwise.
+     */
     public boolean isNonZero() {
-        byte[] s = toByteArray();
+        final byte[] s = toByteArray();
         return Utils.equal(s, ZERO) == 0;
     }
 
     /**
      * h = f + g
-     * Can overlap h with f or g.
-     *
+     * <p>
+     * TODO-CR BR: h is allocated via new, probably not a good idea. Do we need the copying into temp variables if we do that?
+     * <p>
      * Preconditions:
-     *    |f| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
-     *    |g| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
-     *
+     * <p><ul>
+     * <li>|f| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
+     * <li>|g| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
+     * </ul><p>
      * Postconditions:
-     *    |h| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
+     * <p><ul>
+     * <li>|h| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
+     *
+     * @param val The field element to add.
+     * @return The field element this + val.
      */
     public FieldElement add(FieldElement val) {
         int[] g = ((Ed25519FieldElement)val).t;
@@ -51,14 +73,22 @@ public class Ed25519FieldElement extends FieldElement {
 
     /**
      * h = f - g
+     * <p>
      * Can overlap h with f or g.
-     *
+     * <p>
+     * TODO-CR BR: See above.
+     * <p>
      * Preconditions:
-     *    |f| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
-     *    |g| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
-     *
+     * <p><ul>
+     * <li>|f| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
+     * <li>|g| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
+     * </ul><p>
      * Postconditions:
-     *    |h| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
+     * <p><ul>
+     * <li>|h| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
+     *
+     * @param val The field element to subtract.
+     * @return The field element this - val.
      **/
     public FieldElement subtract(FieldElement val) {
         int[] g = ((Ed25519FieldElement)val).t;
@@ -71,12 +101,18 @@ public class Ed25519FieldElement extends FieldElement {
 
     /**
      * h = -f
-     *
+     * <p>
+     * TODO-CR BR: see above.
+     * <p>
      * Preconditions:
-     *    |f| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
-     *
+     * <p><ul>
+     * <li>|f| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
+     * </ul><p>
      * Postconditions:
-     *    |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
+     * <p><ul>
+     * <li>|h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
+     *
+     * @return The field element (-1) * this.
      */
     public FieldElement negate() {
         int[] h = new int[10];
@@ -87,32 +123,42 @@ public class Ed25519FieldElement extends FieldElement {
     }
 
     /**
-     * h = f * g Can overlap h with f or g.
-     * 
-     * Preconditions: |f| bounded by
-     * 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc. |g| bounded by
+     * h = f * g
+     * <p>
+     * Can overlap h with f or g.
+     * <p>
+     * Preconditions:
+     * <p><ul>
+     * <li>|f| bounded by
+     * 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc.
+     * <li>|g| bounded by
      * 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc.
-     * 
-     * Postconditions: |h| bounded by
+     * </ul><p>
+     * Postconditions:
+     * <p><ul>
+     * <li>|h| bounded by
      * 1.01*2^25,1.01*2^24,1.01*2^25,1.01*2^24,etc.
-     *
+     * </ul><p>
      * Notes on implementation strategy:
-     *
+     * <p>
      * Using schoolbook multiplication. Karatsuba would save a little in some
      * cost models.
-     *
+     * <p>
      * Most multiplications by 2 and 19 are 32-bit precomputations; cheaper than
      * 64-bit postcomputations.
-     *
+     * <p>
      * There is one remaining multiplication by 19 in the carry chain; one *19
      * precomputation can be merged into this, but the resulting data flow is
      * considerably less clean.
-     *
+     * <p>
      * There are 12 carries below. 10 of them are 2-way parallelizable and
      * vectorizable. Can get away with 11 carries, but then data flow is much
      * deeper.
-     *
+     * <p>
      * With tighter constraints on inputs can squeeze carries into int32.
+     *
+     * @param val The field element to multiply.
+     * @return The (reasonably reduced) field element this * val.
      */
     public FieldElement multiply(FieldElement val) {
         int[] g = ((Ed25519FieldElement)val).t;
@@ -230,16 +276,28 @@ public class Ed25519FieldElement extends FieldElement {
         long f9g7_38 = f9_2 * (long) g7_19;
         long f9g8_19 = t[9] * (long) g8_19;
         long f9g9_38 = f9_2 * (long) g9_19;
-        long h0 = f0g0+f1g9_38+f2g8_19+f3g7_38+f4g6_19+f5g5_38+f6g4_19+f7g3_38+f8g2_19+f9g1_38;
-        long h1 = f0g1+f1g0   +f2g9_19+f3g8_19+f4g7_19+f5g6_19+f6g5_19+f7g4_19+f8g3_19+f9g2_19;
-        long h2 = f0g2+f1g1_2 +f2g0   +f3g9_38+f4g8_19+f5g7_38+f6g6_19+f7g5_38+f8g4_19+f9g3_38;
-        long h3 = f0g3+f1g2   +f2g1   +f3g0   +f4g9_19+f5g8_19+f6g7_19+f7g6_19+f8g5_19+f9g4_19;
-        long h4 = f0g4+f1g3_2 +f2g2   +f3g1_2 +f4g0   +f5g9_38+f6g8_19+f7g7_38+f8g6_19+f9g5_38;
-        long h5 = f0g5+f1g4   +f2g3   +f3g2   +f4g1   +f5g0   +f6g9_19+f7g8_19+f8g7_19+f9g6_19;
-        long h6 = f0g6+f1g5_2 +f2g4   +f3g3_2 +f4g2   +f5g1_2 +f6g0   +f7g9_38+f8g8_19+f9g7_38;
-        long h7 = f0g7+f1g6   +f2g5   +f3g4   +f4g3   +f5g2   +f6g1   +f7g0   +f8g9_19+f9g8_19;
-        long h8 = f0g8+f1g7_2 +f2g6   +f3g5_2 +f4g4   +f5g3_2 +f6g2   +f7g1_2 +f8g0   +f9g9_38;
-        long h9 = f0g9+f1g8   +f2g7   +f3g6   +f4g5   +f5g4   +f6g3   +f7g2   +f8g1   +f9g0   ;
+
+        /**
+         * Remember: 2^255 congruent 19 modulo p.
+         * h = h0 * 2^0 + h1 * 2^26 + h2 * 2^(26+25) + h3 * 2^(26+25+26) + ... + h9 * 2^(5*26+5*25).
+         * So to get the real number we would have to multiply the coefficients with the corresponding powers of 2.
+         * To get an idea what is going on below, look at the calculation of h0:
+         * h0 is the coefficient to the power 2^0 so it collects (sums) all products that have the power 2^0.
+         * f0 * g0 really is f0 * 2^0 * g0 * 2^0 = (f0 * g0) * 2^0.
+         * f1 * g9 really is f1 * 2^26 * g9 * 2^230 = f1 * g9 * 2^256 = 2 * f1 * g9 * 2^255 congruent 2 * 19 * f1 * g9 * 2^0 modulo p.
+         * f2 * g8 really is f2 * 2^51 * g8 * 2^204 = f2 * g8 * 2^255 congruent 19 * f2 * g8 * 2^0 modulo p.
+         * and so on...
+         */
+        long h0 = f0g0 + f1g9_38 + f2g8_19 + f3g7_38 + f4g6_19 + f5g5_38 + f6g4_19 + f7g3_38 + f8g2_19 + f9g1_38;
+        long h1 = f0g1 + f1g0    + f2g9_19 + f3g8_19 + f4g7_19 + f5g6_19 + f6g5_19 + f7g4_19 + f8g3_19 + f9g2_19;
+        long h2 = f0g2 + f1g1_2  + f2g0    + f3g9_38 + f4g8_19 + f5g7_38 + f6g6_19 + f7g5_38 + f8g4_19 + f9g3_38;
+        long h3 = f0g3 + f1g2    + f2g1    + f3g0    + f4g9_19 + f5g8_19 + f6g7_19 + f7g6_19 + f8g5_19 + f9g4_19;
+        long h4 = f0g4 + f1g3_2  + f2g2    + f3g1_2  + f4g0    + f5g9_38 + f6g8_19 + f7g7_38 + f8g6_19 + f9g5_38;
+        long h5 = f0g5 + f1g4    + f2g3    + f3g2    + f4g1    + f5g0    + f6g9_19 + f7g8_19 + f8g7_19 + f9g6_19;
+        long h6 = f0g6 + f1g5_2  + f2g4    + f3g3_2  + f4g2    + f5g1_2  + f6g0    + f7g9_38 + f8g8_19 + f9g7_38;
+        long h7 = f0g7 + f1g6    + f2g5    + f3g4    + f4g3    + f5g2    + f6g1    + f7g0    + f8g9_19 + f9g8_19;
+        long h8 = f0g8 + f1g7_2  + f2g6    + f3g5_2  + f4g4    + f5g3_2  + f6g2    + f7g1_2  + f8g0    + f9g9_38;
+        long h9 = f0g9 + f1g8    + f2g7    + f3g6    + f4g5    + f5g4    + f6g3    + f7g2    + f8g1    + f9g0;
         long carry0;
         long carry1;
         long carry2;
@@ -317,16 +375,21 @@ public class Ed25519FieldElement extends FieldElement {
 
     /**
      * h = f * f
+     * <p>
      * Can overlap h with f.
-     *
+     * <p>
      * Preconditions:
-     *    |f| bounded by 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc.
-     *
+     * <p><ul>
+     * <li>|f| bounded by 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc.
+     * </ul><p>
      * Postconditions:
-     *    |h| bounded by 1.01*2^25,1.01*2^24,1.01*2^25,1.01*2^24,etc.
-     *
-     * See {@link Ed25519FieldElement#multiply(FieldElement)} for discussion
+     * <p><ul>
+     * <li>|h| bounded by 1.01*2^25,1.01*2^24,1.01*2^25,1.01*2^24,etc.
+     * </ul><p>
+     * See {@link #multiply(FieldElement)} for discussion
      * of implementation strategy.
+     *
+     * @return The (reasonably reduced) square of this field element.
      */
     public FieldElement square() {
         int f0 = t[0];
@@ -407,16 +470,21 @@ public class Ed25519FieldElement extends FieldElement {
         long f8f8_19 = f8   * (long) f8_19;
         long f8f9_38 = f8   * (long) f9_38;
         long f9f9_38 = f9   * (long) f9_38;
-        long h0 = f0f0  +f1f9_76+f2f8_38+f3f7_76+f4f6_38+f5f5_38;
-        long h1 = f0f1_2+f2f9_38+f3f8_38+f4f7_38+f5f6_38;
-        long h2 = f0f2_2+f1f1_2 +f3f9_76+f4f8_38+f5f7_76+f6f6_19;
-        long h3 = f0f3_2+f1f2_2 +f4f9_38+f5f8_38+f6f7_38;
-        long h4 = f0f4_2+f1f3_4 +f2f2   +f5f9_76+f6f8_38+f7f7_38;
-        long h5 = f0f5_2+f1f4_2 +f2f3_2 +f6f9_38+f7f8_38;
-        long h6 = f0f6_2+f1f5_4 +f2f4_2 +f3f3_2 +f7f9_76+f8f8_19;
-        long h7 = f0f7_2+f1f6_2 +f2f5_2 +f3f4_2 +f8f9_38;
-        long h8 = f0f8_2+f1f7_4 +f2f6_2 +f3f5_4 +f4f4   +f9f9_38;
-        long h9 = f0f9_2+f1f8_2 +f2f7_2 +f3f6_2 +f4f5_2;
+
+        /**
+         * Same procedure as in multiply, but this time we have a higher symmetry leading to less summands.
+         * e.g. f1f9_76 really stands for f1 * 2^26 * f9 * 2^230 + f9 * 2^230 + f1 * 2^26 congruent 2 * 2 * 19 * f1 * f9  2^0 modulo p.
+         */
+        long h0 = f0f0   + f1f9_76 + f2f8_38 + f3f7_76 + f4f6_38 + f5f5_38;
+        long h1 = f0f1_2 + f2f9_38 + f3f8_38 + f4f7_38 + f5f6_38;
+        long h2 = f0f2_2 + f1f1_2  + f3f9_76 + f4f8_38 + f5f7_76 + f6f6_19;
+        long h3 = f0f3_2 + f1f2_2  + f4f9_38 + f5f8_38 + f6f7_38;
+        long h4 = f0f4_2 + f1f3_4  + f2f2    + f5f9_76 + f6f8_38 + f7f7_38;
+        long h5 = f0f5_2 + f1f4_2  + f2f3_2  + f6f9_38 + f7f8_38;
+        long h6 = f0f6_2 + f1f5_4  + f2f4_2  + f3f3_2  + f7f9_76 + f8f8_19;
+        long h7 = f0f7_2 + f1f6_2  + f2f5_2  + f3f4_2  + f8f9_38;
+        long h8 = f0f8_2 + f1f7_4  + f2f6_2  + f3f5_4  + f4f4    + f9f9_38;
+        long h9 = f0f9_2 + f1f8_2  + f2f7_2  + f3f6_2  + f4f5_2;
         long carry0;
         long carry1;
         long carry2;
@@ -463,16 +531,21 @@ public class Ed25519FieldElement extends FieldElement {
 
     /**
      * h = 2 * f * f
+     * <p>
      * Can overlap h with f.
-     *
+     * <p>
      * Preconditions:
-     *    |f| bounded by 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc.
-     *
+     * <p><ul>
+     * <li>|f| bounded by 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc.
+     * </ul><p>
      * Postconditions:
-     *    |h| bounded by 1.01*2^25,1.01*2^24,1.01*2^25,1.01*2^24,etc.
-     *
-     * See {@link Ed25519FieldElement#multiply(FieldElement)} for discussion
+     * <p><ul>
+     * <li>|h| bounded by 1.01*2^25,1.01*2^24,1.01*2^25,1.01*2^24,etc.
+     * </ul><p>
+     * See {@link #multiply(FieldElement)} for discussion
      * of implementation strategy.
+     *
+     * @return The (reasonably reduced) square of this field element times 2.
      */
     public FieldElement squareAndDouble() {
         int f0 = t[0];
@@ -553,16 +626,16 @@ public class Ed25519FieldElement extends FieldElement {
         long f8f8_19 = f8   * (long) f8_19;
         long f8f9_38 = f8   * (long) f9_38;
         long f9f9_38 = f9   * (long) f9_38;
-        long h0 = f0f0  +f1f9_76+f2f8_38+f3f7_76+f4f6_38+f5f5_38;
-        long h1 = f0f1_2+f2f9_38+f3f8_38+f4f7_38+f5f6_38;
-        long h2 = f0f2_2+f1f1_2 +f3f9_76+f4f8_38+f5f7_76+f6f6_19;
-        long h3 = f0f3_2+f1f2_2 +f4f9_38+f5f8_38+f6f7_38;
-        long h4 = f0f4_2+f1f3_4 +f2f2   +f5f9_76+f6f8_38+f7f7_38;
-        long h5 = f0f5_2+f1f4_2 +f2f3_2 +f6f9_38+f7f8_38;
-        long h6 = f0f6_2+f1f5_4 +f2f4_2 +f3f3_2 +f7f9_76+f8f8_19;
-        long h7 = f0f7_2+f1f6_2 +f2f5_2 +f3f4_2 +f8f9_38;
-        long h8 = f0f8_2+f1f7_4 +f2f6_2 +f3f5_4 +f4f4   +f9f9_38;
-        long h9 = f0f9_2+f1f8_2 +f2f7_2 +f3f6_2 +f4f5_2;
+        long h0 = f0f0   + f1f9_76 + f2f8_38 + f3f7_76 + f4f6_38 + f5f5_38;
+        long h1 = f0f1_2 + f2f9_38 + f3f8_38 + f4f7_38 + f5f6_38;
+        long h2 = f0f2_2 + f1f1_2  + f3f9_76 + f4f8_38 + f5f7_76 + f6f6_19;
+        long h3 = f0f3_2 + f1f2_2  + f4f9_38 + f5f8_38 + f6f7_38;
+        long h4 = f0f4_2 + f1f3_4  + f2f2    + f5f9_76 + f6f8_38 + f7f7_38;
+        long h5 = f0f5_2 + f1f4_2  + f2f3_2  + f6f9_38 + f7f8_38;
+        long h6 = f0f6_2 + f1f5_4  + f2f4_2  + f3f3_2  + f7f9_76 + f8f8_19;
+        long h7 = f0f7_2 + f1f6_2  + f2f5_2  + f3f4_2  + f8f9_38;
+        long h8 = f0f8_2 + f1f7_4  + f2f6_2  + f3f5_4  + f4f4    + f9f9_38;
+        long h9 = f0f9_2 + f1f8_2  + f2f7_2  + f3f6_2  + f4f5_2;
         long carry0;
         long carry1;
         long carry2;
@@ -618,120 +691,162 @@ public class Ed25519FieldElement extends FieldElement {
         return new Ed25519FieldElement(f, h);
     }
 
+    /**
+     * Invert this field element.
+     * <p>
+     * The inverse is found via Fermat's little theorem:<br>
+     * a^p congruent a mod p and therefore a^(p-2) congruent a^-1 mod p
+     *
+     * @return The inverse of this field element.
+     */
     public FieldElement invert() {
         FieldElement t0, t1, t2, t3;
 
-        // z2 = z1^2^1
+        // 2 == 2 * 1
         t0 = square();
+
+        // TODO -CR BR: What is this? Is the author superstitious?
         for (int i = 1; i < 1; ++i) { // Don't remove this
             t0 = t0.square();
         }
 
-        // z8 = z2^2^2;
+        // 4 == 2 * 2
         t1 = t0.square();
+
+        // 8 == 2 * 4
         for (int i = 1; i < 2; ++i) {
             t1 = t1.square();
         }
 
-        // z9 = z1*z8
+        // 9 == 8 + 1
         t1 = multiply(t1);
 
-        // z11 = z2*z9
+        // 11 == 9 + 2
         t0 = t0.multiply(t1);
 
-        // z22 = z11^2^1
+        // 22 == 2 * 11
         t2 = t0.square();
+
+        // TODO -CR BR: see above
         for (int i = 1; i < 1; ++i) { // Don't remove this
             t2 = t2.square();
         }
 
-        // z_5_0 = z9*z22
+        // 31 == 22 + 9
         t1 = t1.multiply(t2);
 
-        // z_10_5 = z_5_0^2^5
+        // 2^6 - 2^1
         t2 = t1.square();
+
+        // 2^10 - 2^5
         for (int i = 1; i < 5; ++i) {
             t2 = t2.square();
         }
 
-        // z_10_0 = z_10_5*z_5_0
+        // 2^10 - 2^0
         t1 = t2.multiply(t1);
 
-        // z_20_10 = z_10_0^2^10
+        // 2^11 - 2^1
         t2 = t1.square();
+
+        // 2^20 - 2^10
         for (int i = 1; i < 10; ++i) {
             t2 = t2.square();
         }
 
-        // z_20_0 = z_20_10*z_10_0
+        // 2^20 - 2^0
         t2 = t2.multiply(t1);
 
-        // z_40_20 = z_20_0^2^20
+        // 2^21 - 2^1
         t3 = t2.square();
+
+        // 2^40 - 2^20
         for (int i = 1; i < 20; ++i) {
             t3 = t3.square();
         }
 
-        // z_40_0 = z_40_20*z_20_0
+        // 2^40 - 2^0
         t2 = t3.multiply(t2);
 
-        // z_50_10 = z_40_0^2^10
+        // 2^41 - 2^1
         t2 = t2.square();
+
+        // 2^50 - 2^10
         for (int i = 1; i < 10; ++i) {
             t2 = t2.square();
         }
 
-        // z_50_0 = z_50_10*z_10_0
+        // 2^50 - 2^0
         t1 = t2.multiply(t1);
 
-        // z_100_50 = z_50_0^2^50
+        // 2^51 - 2^1
         t2 = t1.square();
+
+        // 2^100 - 2^50
         for (int i = 1; i < 50; ++i) {
             t2 = t2.square();
         }
 
-        // z_100_0 = z_100_50*z_50_0
+        // 2^100 - 2^0
         t2 = t2.multiply(t1);
 
-        // z_200_100 = z_100_0^2^100
+        // 2^101 - 2^1
         t3 = t2.square();
+
+        // 2^200 - 2^100
         for (int i = 1; i < 100; ++i) {
             t3 = t3.square();
         }
 
-        // z_200_0 = z_200_100*z_100_0
+        // 2^200 - 2^0
         t2 = t3.multiply(t2);
 
-        // z_250_50 = z_200_0^2^50
+        // 2^201 - 2^1
         t2 = t2.square();
+
+        // 2^250 - 2^50
         for (int i = 1; i < 50; ++i) {
             t2 = t2.square();
         }
 
-        // z_250_0 = z_250_50*z_50_0
+        // 2^250 - 2^0
         t1 = t2.multiply(t1);
 
-        // z_255_5 = z_250_0^2^5
+        // 2^251 - 2^1
         t1 = t1.square();
+
+        // 2^255 - 2^5
         for (int i = 1; i < 5; ++i) {
             t1 = t1.square();
         }
 
-        // z_255_21 = z_255_5*z11
+        // 2^255 - 21
         return t1.multiply(t0);
     }
 
+    /**
+     * Gets this field element to the power of (2^252 - 3).
+     * This is a helper function for calculating the square root.
+     * <p>
+     * TODO-CR BR: I think it makes sense to have a sqrt function.
+     *
+     * @return This field element to the power of (2^252 - 3).
+     */
     public FieldElement pow22523() {
         FieldElement t0, t1, t2;
 
-        // z2 = z1^2^1
+        // 2 == 2 * 1
         t0 = square();
+
+        // TODO -CR BR: see invert
         for (int i = 1; i < 1; ++i) { // Don't remove this
             t0 = t0.square();
         }
 
-        // z8 = z2^2^2;
+        // 4 == 2 * 2
         t1 = t0.square();
+
+        // 8 == 2 * 4
         for (int i = 1; i < 2; ++i) {
             t1 = t1.square();
         }
@@ -739,98 +854,112 @@ public class Ed25519FieldElement extends FieldElement {
         // z9 = z1*z8
         t1 = multiply(t1);
 
-        // z11 = z2*z9
+        // 11 == 9 + 2
         t0 = t0.multiply(t1);
 
-        // z22 = z11^2^1
+        // 22 == 2 * 11
         t0 = t0.square();
+
+        // TODO -CR BR: see above
         for (int i = 1; i < 1; ++i) { // Don't remove this
             t0 = t0.square();
         }
 
-        // z_5_0 = z9*z22
+        // 31 == 22 + 9
         t0 = t1.multiply(t0);
 
-        // z_10_5 = z_5_0^2^5
+        // 2^6 - 2^1
         t1 = t0.square();
+
+        // 2^10 - 2^5
         for (int i = 1; i < 5; ++i) {
             t1 = t1.square();
         }
 
-        // z_10_0 = z_10_5*z_5_0
+        // 2^10 - 2^0
         t0 = t1.multiply(t0);
 
-        // z_20_10 = z_10_0^2^10
+        // 2^11 - 2^1
         t1 = t0.square();
+
+        // 2^20 - 2^10
         for (int i = 1; i < 10; ++i) {
             t1 = t1.square();
         }
 
-        // z_20_0 = z_20_10*z_10_0
+        // 2^20 - 2^0
         t1 = t1.multiply(t0);
 
-        // z_40_20 = z_20_0^2^20
+        // 2^21 - 2^1
         t2 = t1.square();
+
+        // 2^40 - 2^20
         for (int i = 1; i < 20; ++i) {
             t2 = t2.square();
         }
 
-        // z_40_0 = z_40_20*z_20_0
+        // 2^40 - 2^0
         t1 = t2.multiply(t1);
 
-        // z_50_10 = z_40_0^2^10
+        // 2^41 - 2^1
         t1 = t1.square();
+
+        // 2^50 - 2^10
         for (int i = 1; i < 10; ++i) {
             t1 = t1.square();
         }
 
-        // z_50_0 = z_50_10*z_10_0
+        // 2^50 - 2^0
         t0 = t1.multiply(t0);
 
-        // z_100_50 = z_50_0^2^50
+        // 2^51 - 2^1
         t1 = t0.square();
+
+        // 2^100 - 2^50
         for (int i = 1; i < 50; ++i) {
             t1 = t1.square();
         }
 
-        // z_100_0 = z_100_50*z_50_0
+        // 2^100 - 2^0
         t1 = t1.multiply(t0);
 
-        // z_200_100 = z_100_0^2^100
+        // 2^101 - 2^1
         t2 = t1.square();
+
+        // 2^200 - 2^100
         for (int i = 1; i < 100; ++i) {
             t2 = t2.square();
         }
 
-        // z_200_0 = z_200_100*z_100_0
+        // 2^200 - 2^0
         t1 = t2.multiply(t1);
 
-        // z_250_50 = z_200_0^2^50
+        // 2^201 - 2^1
         t1 = t1.square();
+
+        // 2^250 - 2^50
         for (int i = 1; i < 50; ++i) {
             t1 = t1.square();
         }
 
-        // z_250_0 = z_250_50*z_50_0
+        // 2^250 - 2^0
         t0 = t1.multiply(t0);
 
-        // z_252_2 = z_250_0^2^2
+        // 2^251 - 2^1
         t0 = t0.square();
+
+        // 2^252 - 2^2
         for (int i = 1; i < 2; ++i) {
             t0 = t0.square();
         }
 
-        // z_252_3 = z_252_2*z1
+        // 2^252 - 3
         return multiply(t0);
     }
 
     @Override
     public int hashCode() {
-        int rv = 0;
-        for (int i = 0; i < 10; i++) {
-            rv ^= t[i];
-        }
-        return rv;
+        return Arrays.hashCode(t);
     }
 
     @Override
diff --git a/core/java/src/net/i2p/crypto/eddsa/math/ed25519/Ed25519LittleEndianEncoding.java b/core/java/src/net/i2p/crypto/eddsa/math/ed25519/Ed25519LittleEndianEncoding.java
index 3f3541c1c4..70bd6fdf3d 100644
--- a/core/java/src/net/i2p/crypto/eddsa/math/ed25519/Ed25519LittleEndianEncoding.java
+++ b/core/java/src/net/i2p/crypto/eddsa/math/ed25519/Ed25519LittleEndianEncoding.java
@@ -1,32 +1,48 @@
 package net.i2p.crypto.eddsa.math.ed25519;
 
-import net.i2p.crypto.eddsa.math.Encoding;
-import net.i2p.crypto.eddsa.math.FieldElement;
+import net.i2p.crypto.eddsa.math.*;
 
+/**
+ * Helper class for encoding/decoding from/to the 32 byte representation.
+ * <p>
+ * Reviewed/commented by Bloody Rookie (nemproject@gmx.de)
+ */
 public class Ed25519LittleEndianEncoding extends Encoding {
     /**
-     * Preconditions:<br>
-     *   |h| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.<br><br>
+     * Encodes a given field element in its 32 byte representation. This is done in TWO steps.
+     * Step 1: Reduce the value of the field element modulo p.
+     * Step 2: Convert the field element to the 32 byte representation.
+     * <p>
+     * The idea for the modulo p reduction algorithm is as follows:
+     * <p>
+     * Assumption:
+     * <p><ul>
+     * <li>p = 2^255 - 19
+     * <li>h = h0 + 2^25 * h1 + 2^(26+25) * h2 + ... + 2^230 * h9 where 0 <= |hi| < 2^27 for all i=0,...,9.
+     * <li>h congruent r modulo p, i.e. h = r + q * p for some suitable 0 <= r < p and an integer q.
+     * </ul><p>
+     * Then q = [2^-255 * (h + 19 * 2^-25 * h9 + 1/2)] where [x] = floor(x).
+     * <p>
+     * Proof:
+     * <p>
+     * We begin with some very raw estimation for the bounds of some expressions:
+     * <pre>|h| < 2^230 * 2^30 = 2^260 ==> |r + q * p| < 2^260 ==> |q| < 2^10.
+     * ==> -1/4 <= a := 19^2 * 2^-255 * q < 1/4.
+     * |h - 2^230 * h9| = |h0 + ... + 2^204 * h8| < 2^204 * 2^30 = 2^234.
+     * ==> -1/4 <= b := 19 * 2^-255 * (h - 2^230 * h9) < 1/4</pre>
+     * Therefore 0 < 1/2 - a - b < 1.
+     * <p>
+     * Set x := r + 19 * 2^-255 * r + 1/2 - a - b then
+     * 0 <= x < 255 - 20 + 19 + 1 = 2^255 ==> 0 <= 2^-255 * x < 1. Since q is an integer we have
      *
-     * Write p=2^255-19; q=floor(h/p).<br>
-     * Basic claim: q = floor(2^(-255)(h + 19 2^(-25)h9 + 2^(-1))).
-     * <br><br>
-     * Proof:<br>
-     *   Have |h|<=p so |q|<=1 so |19^2 2^(-255) q|<1/4.<br>
-     *   Also have |h-2^230 h9|<2^231 so |19 2^(-255)(h-2^230 h9)|<1/4.
-     *   <br><br>
-     *   Write y=2^(-1)-19^2 2^(-255)q-19 2^(-255)(h-2^230 h9).<br>
-     *   Then 0 < y < 1.
-     *   <br><br>
-     *   Write r=h-pq.<br>
-     *   Have 0 <= r <= p-1=2^255-20.<br>
-     *   Thus 0 <= r+19(2^-255)r < r+19(2^-255)2^255 <= 2^255-1.
-     *   <br><br>
-     *   Write x=r+19(2^-255)r+y.<br>
-     *   Then 0 < x < 2^255 so floor(2^(-255)x) = 0 so floor(q+2^(-255)x) = q.
-     *   <br><br>
-     *   Have q+2^(-255)x = 2^(-255)(h + 19 2^(-25) h9 + 2^(-1))<br>
-     *   so floor(2^(-255)(h + 19 2^(-25) h9 + 2^(-1))) = q.
+     * <pre>[q + 2^-255 * x] = q        (1)</pre>
+     * <p>
+     * Have a closer look at x:
+     * <pre>x = h - q * (2^255 - 19) + 19 * 2^-255 * (h - q * (2^255 - 19)) + 1/2 - 19^2 * 2^-255 * q - 19 * 2^-255 * (h - 2^230 * h9)
+     *   = h - q * 2^255 + 19 * q + 19 * 2^-255 * h - 19 * q + 19^2 * 2^-255 * q + 1/2 - 19^2 * 2^-255 * q - 19 * 2^-255 * h + 19 * 2^-25 * h9
+     *   = h + 19 * 2^-25 * h9 + 1/2 - q^255.</pre>
+     * <p>
+     * Inserting the expression for x into (1) we get the desired expression for q.
      */
     public byte[] encode(FieldElement x) {
         int[] h = ((Ed25519FieldElement)x).t;
@@ -52,6 +68,8 @@ public class Ed25519LittleEndianEncoding extends Encoding {
         int carry8;
         int carry9;
 
+        // Step 1:
+        // Calculate q
         q = (19 * h9 + (((int) 1) << 24)) >> 25;
         q = (h0 + q) >> 26;
         q = (h1 + q) >> 25;
@@ -64,9 +82,9 @@ public class Ed25519LittleEndianEncoding extends Encoding {
         q = (h8 + q) >> 26;
         q = (h9 + q) >> 25;
 
-        /* Goal: Output h-(2^255-19)q, which is between 0 and 2^255-20. */
+        // r = h - q * p = h - 2^255 * q + 19 * q
+        // First add 19 * q then discard the bit 255
         h0 += 19 * q;
-        /* Goal: Output h-2^255 q, which is between 0 and 2^255-20. */
 
         carry0 = h0 >> 26; h1 += carry0; h0 -= carry0 << 26;
         carry1 = h1 >> 25; h2 += carry1; h1 -= carry1 << 25;
@@ -78,15 +96,8 @@ public class Ed25519LittleEndianEncoding extends Encoding {
         carry7 = h7 >> 25; h8 += carry7; h7 -= carry7 << 25;
         carry8 = h8 >> 26; h9 += carry8; h8 -= carry8 << 26;
         carry9 = h9 >> 25;               h9 -= carry9 << 25;
-                        /* h10 = carry9 */
-
-        /*
-        Goal: Output h0+...+2^255 h10-2^255 q, which is between 0 and 2^255-20.
-        Have h0+...+2^230 h9 between 0 and 2^255-1;
-        evidently 2^255 h10-2^255 q = 0.
-        Goal: Output h0+...+2^230 h9.
-        */
 
+        // Step 2 (straight forward conversion):
         byte[] s = new byte[32];
         s[0] = (byte) h0;
         s[1] = (byte) (h0 >> 8);
@@ -139,7 +150,10 @@ public class Ed25519LittleEndianEncoding extends Encoding {
     }
 
     /**
-     * Ignores top bit.
+     * Decodes a given field element in its 10 byte 2^25.5 representation.
+     *
+     * @param in The 32 byte representation.
+     * @return The field element in its 2^25.5 bit representation.
      */
     public FieldElement decode(byte[] in) {
         long h0 = load_4(in, 0);
@@ -151,7 +165,7 @@ public class Ed25519LittleEndianEncoding extends Encoding {
         long h6 = load_3(in, 20) << 7;
         long h7 = load_3(in, 23) << 5;
         long h8 = load_3(in, 26) << 4;
-        long h9 = (load_3(in, 29) & 8388607) << 2;
+        long h9 = (load_3(in, 29) & 0x7FFFFF) << 2;
         long carry0;
         long carry1;
         long carry2;
@@ -163,6 +177,7 @@ public class Ed25519LittleEndianEncoding extends Encoding {
         long carry8;
         long carry9;
 
+        // Remember: 2^255 congruent 19 modulo p
         carry9 = (h9 + (long) (1<<24)) >> 25; h0 += carry9 * 19; h9 -= carry9 << 25;
         carry1 = (h1 + (long) (1<<24)) >> 25; h2 += carry1; h1 -= carry1 << 25;
         carry3 = (h3 + (long) (1<<24)) >> 25; h4 += carry3; h3 -= carry3 << 25;
@@ -190,11 +205,15 @@ public class Ed25519LittleEndianEncoding extends Encoding {
     }
 
     /**
+     * Is the FieldElement negative in this encoding?
+     * <p>
      * Return true if x is in {1,3,5,...,q-2}<br>
-     * Return false if x is in {0,2,4,...,q-1}<br><br>
+     * Return false if x is in {0,2,4,...,q-1}
+     * <p>
+     * Preconditions:
+     * <p><ul>
+     * <li>|x| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
      *
-     * Preconditions:<br>
-     *    |x| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
      * @return true if x is in {1,3,5,...,q-2}, false otherwise.
      */
     public boolean isNegative(FieldElement x) {
diff --git a/core/java/src/net/i2p/crypto/eddsa/math/ed25519/Ed25519ScalarOps.java b/core/java/src/net/i2p/crypto/eddsa/math/ed25519/Ed25519ScalarOps.java
index b5485d7937..9fe59e692b 100644
--- a/core/java/src/net/i2p/crypto/eddsa/math/ed25519/Ed25519ScalarOps.java
+++ b/core/java/src/net/i2p/crypto/eddsa/math/ed25519/Ed25519ScalarOps.java
@@ -4,40 +4,51 @@ import net.i2p.crypto.eddsa.math.ScalarOps;
 import static net.i2p.crypto.eddsa.math.ed25519.Ed25519LittleEndianEncoding.load_3;
 import static net.i2p.crypto.eddsa.math.ed25519.Ed25519LittleEndianEncoding.load_4;
 
+/**
+ * Class for reducing a huge integer modulo the group order q and
+ * doing a combined multiply plus add plus reduce operation.
+ * <p>
+ * q = 2^252 + 27742317777372353535851937790883648493.
+ * <p>
+ * Reviewed/commented by Bloody Rookie (nemproject@gmx.de)
+ */
 public class Ed25519ScalarOps implements ScalarOps {
 
     /**
-     * Input:<br>
-     *   s[0]+256*s[1]+...+256^63*s[63] = s<br><br>
-     *
-     * Output:<br>
-     *   s[0]+256*s[1]+...+256^31*s[31] = s mod l<br>
-     *   where l = 2^252 + 27742317777372353535851937790883648493.
+     * Reduction modulo the group order q.
+     * <p>
+     * Input:
+     *   s[0]+256*s[1]+...+256^63*s[63] = s
+     * <p>
+     * Output:
+     *   s[0]+256*s[1]+...+256^31*s[31] = s mod q
+     *   where q = 2^252 + 27742317777372353535851937790883648493.
      */
     public byte[] reduce(byte[] s) {
-        long s0 = 2097151 & load_3(s, 0);
-        long s1 = 2097151 & (load_4(s, 2) >> 5);
-        long s2 = 2097151 & (load_3(s, 5) >> 2);
-        long s3 = 2097151 & (load_4(s, 7) >> 7);
-        long s4 = 2097151 & (load_4(s, 10) >> 4);
-        long s5 = 2097151 & (load_3(s, 13) >> 1);
-        long s6 = 2097151 & (load_4(s, 15) >> 6);
-        long s7 = 2097151 & (load_3(s, 18) >> 3);
-        long s8 = 2097151 & load_3(s, 21);
-        long s9 = 2097151 & (load_4(s, 23) >> 5);
-        long s10 = 2097151 & (load_3(s, 26) >> 2);
-        long s11 = 2097151 & (load_4(s, 28) >> 7);
-        long s12 = 2097151 & (load_4(s, 31) >> 4);
-        long s13 = 2097151 & (load_3(s, 34) >> 1);
-        long s14 = 2097151 & (load_4(s, 36) >> 6);
-        long s15 = 2097151 & (load_3(s, 39) >> 3);
-        long s16 = 2097151 & load_3(s, 42);
-        long s17 = 2097151 & (load_4(s, 44) >> 5);
-        long s18 = 2097151 & (load_3(s, 47) >> 2);
-        long s19 = 2097151 & (load_4(s, 49) >> 7);
-        long s20 = 2097151 & (load_4(s, 52) >> 4);
-        long s21 = 2097151 & (load_3(s, 55) >> 1);
-        long s22 = 2097151 & (load_4(s, 57) >> 6);
+        // s0,..., s22 have 21 bits, s23 has 29 bits
+        long s0 = 0x1FFFFF & load_3(s, 0);
+        long s1 = 0x1FFFFF & (load_4(s, 2) >> 5);
+        long s2 = 0x1FFFFF & (load_3(s, 5) >> 2);
+        long s3 = 0x1FFFFF & (load_4(s, 7) >> 7);
+        long s4 = 0x1FFFFF & (load_4(s, 10) >> 4);
+        long s5 = 0x1FFFFF & (load_3(s, 13) >> 1);
+        long s6 = 0x1FFFFF & (load_4(s, 15) >> 6);
+        long s7 = 0x1FFFFF & (load_3(s, 18) >> 3);
+        long s8 = 0x1FFFFF & load_3(s, 21);
+        long s9 = 0x1FFFFF & (load_4(s, 23) >> 5);
+        long s10 = 0x1FFFFF & (load_3(s, 26) >> 2);
+        long s11 = 0x1FFFFF & (load_4(s, 28) >> 7);
+        long s12 = 0x1FFFFF & (load_4(s, 31) >> 4);
+        long s13 = 0x1FFFFF & (load_3(s, 34) >> 1);
+        long s14 = 0x1FFFFF & (load_4(s, 36) >> 6);
+        long s15 = 0x1FFFFF & (load_3(s, 39) >> 3);
+        long s16 = 0x1FFFFF & load_3(s, 42);
+        long s17 = 0x1FFFFF & (load_4(s, 44) >> 5);
+        long s18 = 0x1FFFFF & (load_3(s, 47) >> 2);
+        long s19 = 0x1FFFFF & (load_4(s, 49) >> 7);
+        long s20 = 0x1FFFFF & (load_4(s, 52) >> 4);
+        long s21 = 0x1FFFFF & (load_3(s, 55) >> 1);
+        long s22 = 0x1FFFFF & (load_4(s, 57) >> 6);
         long s23 = (load_4(s, 60) >> 3);
         long carry0;
         long carry1;
@@ -57,6 +68,22 @@ public class Ed25519ScalarOps implements ScalarOps {
         long carry15;
         long carry16;
 
+        /**
+         * Lots of magic numbers :)
+         * To understand what's going on below, note that
+         *
+         * (1) q = 2^252 + q0 where q0 = 27742317777372353535851937790883648493.
+         * (2) s11 is the coefficient of 2^(11*21), s23 is the coefficient of 2^(^23*21) and 2^252 = 2^((23-11) * 21)).
+         * (3) 2^252 congruent -q0 modulo q.
+         * (4) -q0 = 666643 * 2^0 + 470296 * 2^21 + 654183 * 2^(2*21) - 997805 * 2^(3*21) + 136657 * 2^(4*21) - 683901 * 2^(5*21)
+         *
+         * Thus
+         * s23 * 2^(23*11) = s23 * 2^(12*21) * 2^(11*21) = s3 * 2^252 * 2^(11*21) congruent
+         * s23 * (666643 * 2^0 + 470296 * 2^21 + 654183 * 2^(2*21) - 997805 * 2^(3*21) + 136657 * 2^(4*21) - 683901 * 2^(5*21)) * 2^(11*21) modulo q =
+         * s23 * (666643 * 2^(11*21) + 470296 * 2^(12*21) + 654183 * 2^(13*21) - 997805 * 2^(14*21) + 136657 * 2^(15*21) - 683901 * 2^(16*21)).
+         *
+         * The same procedure is then applied for s22,...,s18.
+         */
         s11 += s23 * 666643;
         s12 += s23 * 470296;
         s13 += s23 * 654183;
@@ -111,6 +138,9 @@ public class Ed25519ScalarOps implements ScalarOps {
         // not used again
         //s18 = 0;
 
+        /**
+         * Time to reduce the coefficient in order not to get an overflow.
+         */
         carry6 = (s6 + (1<<20)) >> 21; s7 += carry6; s6 -= carry6 << 21;
         carry8 = (s8 + (1<<20)) >> 21; s9 += carry8; s8 -= carry8 << 21;
         carry10 = (s10 + (1<<20)) >> 21; s11 += carry10; s10 -= carry10 << 21;
@@ -124,6 +154,9 @@ public class Ed25519ScalarOps implements ScalarOps {
         carry13 = (s13 + (1<<20)) >> 21; s14 += carry13; s13 -= carry13 << 21;
         carry15 = (s15 + (1<<20)) >> 21; s16 += carry15; s15 -= carry15 << 21;
 
+        /**
+         * Continue with above procedure.
+         */
         s5 += s17 * 666643;
         s6 += s17 * 470296;
         s7 += s17 * 654183;
@@ -178,6 +211,9 @@ public class Ed25519ScalarOps implements ScalarOps {
         // set below
         //s12 = 0;
 
+        /**
+         * Reduce coefficients again.
+         */
         carry0 = (s0 + (1<<20)) >> 21; s1 += carry0; s0 -= carry0 << 21;
         carry2 = (s2 + (1<<20)) >> 21; s3 += carry2; s2 -= carry2 << 21;
         carry4 = (s4 + (1<<20)) >> 21; s5 += carry4; s4 -= carry4 << 21;
@@ -216,6 +252,7 @@ public class Ed25519ScalarOps implements ScalarOps {
         //carry11 = s11 >> 21; s12 += carry11; s11 -= carry11 << 21;
         carry11 = s11 >> 21; s12 = carry11; s11 -= carry11 << 21;
 
+        // TODO-CR BR: Is it really needed to do it TWO times? (it doesn't hurt, just a question).
         s0 += s12 * 666643;
         s1 += s12 * 470296;
         s2 += s12 * 654183;
@@ -237,6 +274,7 @@ public class Ed25519ScalarOps implements ScalarOps {
         carry9 = s9 >> 21; s10 += carry9; s9 -= carry9 << 21;
         carry10 = s10 >> 21; s11 += carry10; s10 -= carry10 << 21;
 
+        // s0, ..., s11 got 21 bits each.
         byte[] result = new byte[32];
         result[0] = (byte) s0;
         result[1] = (byte) (s0 >> 8);
@@ -275,51 +313,54 @@ public class Ed25519ScalarOps implements ScalarOps {
 
 
     /**
-     * Input:<br>
-     *   a[0]+256*a[1]+...+256^31*a[31] = a<br>
-     *   b[0]+256*b[1]+...+256^31*b[31] = b<br>
-     *   c[0]+256*c[1]+...+256^31*c[31] = c<br><br>
-     *
-     * Output:<br>
-     *   result[0]+256*result[1]+...+256^31*result[31] = (ab+c) mod l<br>
-     *   where l = 2^252 + 27742317777372353535851937790883648493.
+     * Input:
+     * <p><ul>
+     * <li>a[0]+256*a[1]+...+256^31*a[31] = a
+     * <li>b[0]+256*b[1]+...+256^31*b[31] = b
+     * <li>c[0]+256*c[1]+...+256^31*c[31] = c
+     * </ul><p>
+     * Output:
+     *   result[0]+256*result[1]+...+256^31*result[31] = (ab+c) mod q
+     *   where q = 2^252 + 27742317777372353535851937790883648493.
+     * <p>
+     * See the comments in {@link #reduce(byte[])} for an explanation of the algorithm.
      */
     public byte[] multiplyAndAdd(byte[] a, byte[] b, byte[] c) {
-        long a0 = 2097151 & load_3(a, 0);
-        long a1 = 2097151 & (load_4(a, 2) >> 5);
-        long a2 = 2097151 & (load_3(a, 5) >> 2);
-        long a3 = 2097151 & (load_4(a, 7) >> 7);
-        long a4 = 2097151 & (load_4(a, 10) >> 4);
-        long a5 = 2097151 & (load_3(a, 13) >> 1);
-        long a6 = 2097151 & (load_4(a, 15) >> 6);
-        long a7 = 2097151 & (load_3(a, 18) >> 3);
-        long a8 = 2097151 & load_3(a, 21);
-        long a9 = 2097151 & (load_4(a, 23) >> 5);
-        long a10 = 2097151 & (load_3(a, 26) >> 2);
+        long a0 = 0x1FFFFF & load_3(a, 0);
+        long a1 = 0x1FFFFF & (load_4(a, 2) >> 5);
+        long a2 = 0x1FFFFF & (load_3(a, 5) >> 2);
+        long a3 = 0x1FFFFF & (load_4(a, 7) >> 7);
+        long a4 = 0x1FFFFF & (load_4(a, 10) >> 4);
+        long a5 = 0x1FFFFF & (load_3(a, 13) >> 1);
+        long a6 = 0x1FFFFF & (load_4(a, 15) >> 6);
+        long a7 = 0x1FFFFF & (load_3(a, 18) >> 3);
+        long a8 = 0x1FFFFF & load_3(a, 21);
+        long a9 = 0x1FFFFF & (load_4(a, 23) >> 5);
+        long a10 = 0x1FFFFF & (load_3(a, 26) >> 2);
         long a11 = (load_4(a, 28) >> 7);
-        long b0 = 2097151 & load_3(b, 0);
-        long b1 = 2097151 & (load_4(b, 2) >> 5);
-        long b2 = 2097151 & (load_3(b, 5) >> 2);
-        long b3 = 2097151 & (load_4(b, 7) >> 7);
-        long b4 = 2097151 & (load_4(b, 10) >> 4);
-        long b5 = 2097151 & (load_3(b, 13) >> 1);
-        long b6 = 2097151 & (load_4(b, 15) >> 6);
-        long b7 = 2097151 & (load_3(b, 18) >> 3);
-        long b8 = 2097151 & load_3(b, 21);
-        long b9 = 2097151 & (load_4(b, 23) >> 5);
-        long b10 = 2097151 & (load_3(b, 26) >> 2);
+        long b0 = 0x1FFFFF & load_3(b, 0);
+        long b1 = 0x1FFFFF & (load_4(b, 2) >> 5);
+        long b2 = 0x1FFFFF & (load_3(b, 5) >> 2);
+        long b3 = 0x1FFFFF & (load_4(b, 7) >> 7);
+        long b4 = 0x1FFFFF & (load_4(b, 10) >> 4);
+        long b5 = 0x1FFFFF & (load_3(b, 13) >> 1);
+        long b6 = 0x1FFFFF & (load_4(b, 15) >> 6);
+        long b7 = 0x1FFFFF & (load_3(b, 18) >> 3);
+        long b8 = 0x1FFFFF & load_3(b, 21);
+        long b9 = 0x1FFFFF & (load_4(b, 23) >> 5);
+        long b10 = 0x1FFFFF & (load_3(b, 26) >> 2);
         long b11 = (load_4(b, 28) >> 7);
-        long c0 = 2097151 & load_3(c, 0);
-        long c1 = 2097151 & (load_4(c, 2) >> 5);
-        long c2 = 2097151 & (load_3(c, 5) >> 2);
-        long c3 = 2097151 & (load_4(c, 7) >> 7);
-        long c4 = 2097151 & (load_4(c, 10) >> 4);
-        long c5 = 2097151 & (load_3(c, 13) >> 1);
-        long c6 = 2097151 & (load_4(c, 15) >> 6);
-        long c7 = 2097151 & (load_3(c, 18) >> 3);
-        long c8 = 2097151 & load_3(c, 21);
-        long c9 = 2097151 & (load_4(c, 23) >> 5);
-        long c10 = 2097151 & (load_3(c, 26) >> 2);
+        long c0 = 0x1FFFFF & load_3(c, 0);
+        long c1 = 0x1FFFFF & (load_4(c, 2) >> 5);
+        long c2 = 0x1FFFFF & (load_3(c, 5) >> 2);
+        long c3 = 0x1FFFFF & (load_4(c, 7) >> 7);
+        long c4 = 0x1FFFFF & (load_4(c, 10) >> 4);
+        long c5 = 0x1FFFFF & (load_3(c, 13) >> 1);
+        long c6 = 0x1FFFFF & (load_4(c, 15) >> 6);
+        long c7 = 0x1FFFFF & (load_3(c, 18) >> 3);
+        long c8 = 0x1FFFFF & load_3(c, 21);
+        long c9 = 0x1FFFFF & (load_4(c, 23) >> 5);
+        long c10 = 0x1FFFFF & (load_3(c, 26) >> 2);
         long c11 = (load_4(c, 28) >> 7);
         long s0;
         long s1;
-- 
GitLab